Explore les surfaces minimales, la courbure, l'opérateur Laplace-Beltrami, les solutions numériques, le lissage laplacien, le flux de diffusion et l'intégration du temps.
Explore les courbes dans le plan orienté, en discutant de l'orientation, des espaces vectoriels, des relations d'équivalence et de la courbure des courbes régulières.
Couvre le cadre pour les plaques, les énergies de flexion et d'étirement, et Föppl-von Kármán Equations, explorant les courbures moyennes et gaussiennes.
Couvre les systèmes de coordonnées accélérés et inertiels, jacobiens, les éléments de volume, les dérivés covariants, les symboles Christoffel, le cas Lorentz et les propriétés tenseurs métriques.