Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.
Couvre les modèles linéaires, y compris la régression, les dérivés, les gradients, les hyperplans et la transition de classification, en mettant laccent sur la minimisation des risques et des mesures dévaluation.
Couvre l'optimisation dans l'apprentissage automatique, en mettant l'accent sur la descente par gradient pour la régression linéaire et logistique, la descente par gradient stochastique et des considérations pratiques.
Explore les bases des réseaux neuraux, le problème XOR, la classification et les applications pratiques comme la prévision des données météorologiques.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.