Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.
Explore la théorie des graphes dans la connectomique cérébrale, les applications d'IRM, la pertinence de l'analyse de réseau et les empreintes digitales individuelles.
Explore les distances sur les graphiques, les normes de coupe, les arbres de couverture, les modèles de blocs, les métriques, les normes et les ERGM dans l'analyse des données du réseau.
Explore le rôle des propriétés topologiques d'ordre supérieur dans les réseaux complexes en utilisant l'analyse topologique des données pour la détection des ruptures structurelles et des anomalies de prix.
Explore les regroupements de réseaux, les regroupements spectraux, l'algorithme des moyennes k, les propriétés des valeurs propres, l'estimation des modèles de blocs et la mesure de la similarité structurelle.
Explore la régression non paramétrique pour les réseaux, couvrant l'analyse des données d'objets, les graphiques de réseaux, les distances extrinsèques et les projections pratiques.
Introduit des structures de données réseau, des modèles et des techniques d'analyse, mettant l'accent sur l'invariance de permutation et les réseaux Erdős-Rényi.