Couvre les méthodes numériques pour résoudre les problèmes de valeurs limites en utilisant des méthodes de différence finie, de FFT et d'éléments finis.
Couvre les bases des équations différentielles partielles, en mettant l'accent sur la modélisation du transfert de chaleur et les méthodes de solution numérique.
Introduit la méthode de différence finie pour l'approximation des dérivés et la résolution des équations différentielles dans les applications pratiques.
Fournit un aperçu de l'analyse des mécanismes avancés utilisant la méthode des éléments finis et l'analyse des éléments finis dans les applications d'ingénierie.
Couvre les méthodes numériques pour résoudre les problèmes de valeur limite, y compris les applications avec la transformée de Fourier rapide (FFT) et les données de débruitage.
Explore la monotonie inverse dans les méthodes numériques pour les équations différentielles, en mettant l'accent sur les critères de stabilité et de convergence.