Examine la transition entre les multiples intégrés et les multiples généraux, améliore les concepts fondamentaux et discute des raisons mathématiques des deux approches.
Introduit des champs vectoriels différenciés le long de courbes sur des collecteurs avec des connexions et l'opérateur unique satisfaisant des propriétés spécifiques.
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Couvre des courbes modulaires comme des surfaces compactes de Riemann, expliquant leur topologie, la construction de graphiques holomorphes et leurs propriétés.