Explore la mise à niveau des fondations des collecteurs intégrés à généraux dans l'optimisation, en discutant des ensembles lisses et des vecteurs tangents.
Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Introduit Manopt, une boîte à outils pour l'optimisation sur les collecteurs, en se concentrant sur la résolution des problèmes d'optimisation sur les collecteurs lisses à l'aide de la version Matlab.
Explore la dynamique des débits réguliers d'Euler sur les collecteurs Riemanniens, couvrant les fluides idéaux, les équations d'Euler, les débits eulérisables et les obstacles à l'exposition des bouchons.
Explore les ensembles dénombrables et innombrables, l'ensemble Cantor, l'ensemble Mandelbrot et la dimension Box dans la dynamique non linéaire et les systèmes complexes.