Explore l'apprentissage et le contrôle adaptatif des robots à travers SEDS et LPV-DS, mettant l'accent sur la stabilité, la dynamique non linéaire et l'optimisation.
Explore l'évitement des obstacles en utilisant Dynamical Systems pour les robots, en se concentrant sur la modulation, les garanties de stabilité et la théorie de la contraction.
Explore les progrès de l'apprentissage robot pour l'autonomie à l'échelle, couvrant les défis de l'apprentissage profond, l'architecture efficace, les résultats d'analyse comparative et les implications sociétales.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Explore l'apprentissage et le contrôle adaptatif pour les robots, en mettant l'accent sur la modulation des systèmes dynamiques pour améliorer la stabilité et permettre le mouvement réactif.
Couvre les défis et les solutions pour que les robots travaillent en toute sécurité avec les humains, en mettant l'accent sur l'adaptabilité et la prévisibilité.
Examine le contrôle sensorimoteur dans la locomotion à l'aide de robots et de modèles mathématiques, explorant la locomotion bimodale, la marche des insectes et la natation ondulatoire.