Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.
Explore les problèmes d'optimisation convexe, les critères d'optimalité, les problèmes équivalents et les applications pratiques dans le transport et la robotique.
Explore la dualité lagrangienne dans l'optimisation convexe, transformant les problèmes en formulations min-max et discutant de l'importance des solutions doubles.
Explore la dualité de programmation linéaire, couvrant la dualité faible, la dualité forte, l'interprétation des multiplicateurs de Lagrange et les contraintes d'optimisation.