Couvre la classification et les solutions des équations aux dérivées partielles, y compris les techniques de transformation de Laplace et de séparation des variables.
Explore les espaces de distribution et d'interpolation, les opérateurs différentiels, la transformée de Fourier, l'espace de Schwartz, les solutions fondamentales, la transformée de Farrier et la continuité uniforme.
Explore les modèles PDE non linéaires avec perturbation fractionnelle stochastique, en se concentrant sur l'identification de régularité et l'interprétation du bruit espace-temps.
Explore les différences finies pour résoudre des systèmes linéaires à partir de PDE de manière itérative, en mettant l'accent sur les critères de convergence et les exercices sur les singularités.