Explore la structure locale des groupes compacts locaux totalement déconnectés, couvrant des sous-groupes proportionnels, des achèvements, des automorphismes locaux et le quasi-centre.
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Couvre des courbes modulaires comme des surfaces compactes de Riemann, expliquant leur topologie, la construction de graphiques holomorphes et leurs propriétés.
Explore des groupes plats d'automorphismes et leurs propriétés, y compris des fonctions de minimisation et d'invariance dans des conditions spécifiques.
Explore les propriétés des endomorphismes et des automorphismes des groupes compacts locaux, en mettant l'accent sur l'invariance, la théorie de la représentation des arbres et les sous-groupes minimaux.