Explore le transport optimal et les flux de gradient dans Rd, en mettant l'accent sur la convergence et le rôle des théorèmes de Lipschitz et Picard-Lindelf.
Explore les modèles linéaires, les surajustements et l'importance de l'expansion des fonctionnalités et ajoute plus de données pour réduire les surajustements.
Fournit un aperçu des techniques d'optimisation, en se concentrant sur la descente de gradient et les propriétés des fonctions convexes dans l'apprentissage automatique.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité, les algorithmes et leurs applications pour assurer une convergence efficace vers les minima mondiaux.