Explore les sous-représentations de la représentation régulière dans la théorie des groupes, en mettant l'accent sur les propriétés et l'isomorphisme entre les sous-représentations.
Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
Explore la construction des représentations de groupe à travers diverses méthodes et fournit un exemple illustratif en utilisant la représentation standard de sr2 sur c2.