Introduit les bases des équations différentielles ordinaires, explorant l'existence, l'unicité, les dimensions supérieures, les fonctions de Lipschitz et la recherche de solutions.
Explore les équations différentielles stochastiques avec des exemples comme le mouvement brownien et les processus carré-root, en discutant de leur relation avec les équations différentielles partielles.
Couvre le caractère unique des solutions dans les équations différentielles, en se concentrant sur le théorème de Cauchy-Lipschitz et ses implications pour les solutions locales et globales.
Couvre le calcul stochastique, en se concentrant sur la formule d'Itô, les équations différentielles stochastiques, les propriétés martingales et le prix d'option.