Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.
Explore les méthodes d'optimisation primal-dual, en mettant l'accent sur les techniques de gradient lagrangien et leurs applications dans l'optimisation des données.
Explore la descente progressive stochastique avec la moyenne, la comparant avec la descente progressive, et discute des défis dans l'optimisation non convexe et les techniques de récupération clairsemées.
Couvre les bases de l'optimisation, y compris les métriques, les normes, la convexité, les gradients et la régression logistique, en mettant l'accent sur les forts taux de convexité et de convergence.