Produit (mathématiques)On nomme produit de nombres entiers, réels, complexes ou autres le résultat de leur multiplication. Les éléments multipliés s’appellent les facteurs du produit. L’expression d’un produit est aussi appelée « produit », par exemple l’écriture 3a du triple du nombre a est un produit de deux facteurs, où le symbole de la multiplication est sous-entendu. L'ordre dans lequel les nombres réels ou les nombres complexes sont multipliés, de même que la façon de regrouper ces termes, n'ont pas d'importance ; ainsi, nulle permutation de termes ne modifie le résultat du produit.
Factorisation de CholeskyLa factorisation de Cholesky, nommée d'après André-Louis Cholesky, consiste, pour une matrice symétrique définie positive , à déterminer une matrice triangulaire inférieure telle que : . La matrice est en quelque sorte une « racine carrée » de . Cette décomposition permet notamment de calculer la matrice inverse , de calculer le déterminant de A (égal au carré du produit des éléments diagonaux de ) ou encore de simuler une loi multinormale. Elle est aussi utilisée en chimie quantique pour accélérer les calculs (voir Décomposition de Cholesky (chimie quantique)).
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Sous-groupeUn sous-groupe est un objet mathématique décrit par la théorie des groupes. Dans cet article, (G, ∗) désigne un groupe d'élément neutre e. Dans la pratique, on note la loi interne du sous-groupe avec le même symbole que celui de la loi interne du groupe, c'est-à-dire ∗. Si G est un groupe alors {e} (le groupe réduit à l'élément neutre) et G sont toujours des sous-groupes de G. Ce sont les sous-groupes triviaux de G. On les appelle également les sous-groupes impropres de G.
Intersection numberIn mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem. The intersection number is obvious in certain cases, such as the intersection of the x- and y-axes in a plane, which should be one.
Orthogonal transformationIn linear algebra, an orthogonal transformation is a linear transformation T : V → V on a real inner product space V, that preserves the inner product. That is, for each pair u, v of elements of V, we have Since the lengths of vectors and the angles between them are defined through the inner product, orthogonal transformations preserve lengths of vectors and angles between them. In particular, orthogonal transformations map orthonormal bases to orthonormal bases. Orthogonal transformations are injective: if then , hence , so the kernel of is trivial.
Matrice de ToeplitzEn algèbre linéaire, une matrice de Toeplitz (d'après Otto Toeplitz) ou matrice à diagonales constantes est une matrice dont les coefficients sur une diagonale descendant de gauche à droite sont les mêmes. Par exemple, la matrice suivante est une matrice de Toeplitz : Toute matrice A à n lignes et n colonnes de la forme est une matrice de Toeplitz. Si l'élément situé à l’intersection des ligne i et colonne j de A est noté Ai,j, alors on a : En général, une équation matricielle correspond à un système de n équations linéaires à résoudre.
Matrix multiplication algorithmBecause matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors (perhaps over a network).
Catégorie des modulesEn mathématiques, la catégorie des modules sur un monoïde R est une construction qui rend compte abstraitement des propriétés observées dans l'étude des modules sur un anneau, en les généralisant. L'étude de catégories de modules apparaît naturellement en théorie des représentations et en géométrie algébrique. Puisqu'un R-module est un espace vectoriel lorsque R est un corps commutatif, on peut dans un tel cas identifier la catégorie des modules sur R à la sur le corps R.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).