Transformation en ZLa transformation en Z est un outil mathématique de l'automatique et du traitement du signal, qui est l'équivalent discret de la transformation de Laplace. Elle transforme un signal réel du domaine temporel en un signal représenté par une série complexe et appelé transformée en Z. Elle est utilisée entre autres pour le calcul de filtres numériques à réponse impulsionnelle infinie et en automatique pour modéliser des systèmes dynamiques de manière discrète.
Modulation du signalEn télécommunications, le signal transportant une information doit passer par un moyen de transmission entre un émetteur et un récepteur. Le signal est rarement adapté à la transmission directe par le canal de communication choisi, hertzien, filaire, ou optique. La modulation peut être définie comme le processus par lequel le signal est transformé de sa forme originale en une forme adaptée au canal de transmission, par exemple en faisant varier les paramètres d'amplitude et d'argument (phase/fréquence) d'une onde sinusoïdale appelée porteuse.
Filtre numériqueEn électronique, un filtre numérique est un élément qui effectue un filtrage à l'aide d'une succession d'opérations mathématiques sur un signal discret. C'est-à-dire qu'il modifie le contenu spectral du signal d'entrée en atténuant ou éliminant certaines composantes spectrales indésirées. Contrairement aux filtres analogiques, qui sont réalisés à l'aide d'un agencement de composantes physiques (résistance, condensateur, inductance, transistor, etc.
Système linéaireUn système linéaire (le terme système étant pris au sens de l'automatique, à savoir un système dynamique) est un objet du monde matériel qui peut être décrit par des équations linéaires (équations linéaires différentielles ou aux différences), ou encore qui obéit au principe de superposition : toute combinaison linéaire des variables de ce système est encore une variable de ce système. Les systèmes non linéaires sont plus difficiles à étudier que les systèmes linéaires.
Multidimensional discrete convolutionIn signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space. It is also a special case of convolution on groups when the group is the group of n-tuples of integers. Similar to the one-dimensional case, an asterisk is used to represent the convolution operation.
Échantillon biaiséEn statistiques, le mot biais a un sens précis qui n'est pas tout à fait le sens habituel du mot. Un échantillon biaisé est un ensemble d'individus d'une population, censé la représenter, mais dont la sélection des individus a introduit un biais qui ne permet alors plus de conclure directement pour l'ensemble de la population. Un échantillon biaisé n'est donc pas un échantillon de personnes biaisées (bien que ça puisse être le cas) mais avant tout un échantillon sélectionné de façon biaisée.
Bande de basethumb|right|Spectre d'un signal en bande de base Dans le jargon des télécommunications, le terme de bande de base ou base de bande (ou en anglais baseband) désigne une technique de transmission dans laquelle le signal est envoyé directement sur le canal après Codage en ligne sans passer par un codage canal (sans modulation). Le signal transmis peut être analogique ou numérique.
Espace de BanachEn mathématiques, plus particulièrement en analyse fonctionnelle, on appelle espace de Banach un espace vectoriel normé sur un sous-corps K de C (en général, K = R ou C), complet pour la distance issue de sa norme. Comme la topologie induite par sa distance est compatible avec sa structure d’espace vectoriel, c’est un espace vectoriel topologique. Les espaces de Banach possèdent de nombreuses propriétés qui font d'eux un outil essentiel pour l'analyse fonctionnelle. Ils doivent leur nom au mathématicien polonais Stefan Banach.
Fractional Fourier transformIn mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.
Sample-rate conversionSample-rate conversion, sampling-frequency conversion or resampling is the process of changing the sampling rate or sampling frequency of a discrete signal to obtain a new discrete representation of the underlying continuous signal. Application areas include and audio/visual systems, where different sampling rates may be used for engineering, economic, or historical reasons. For example, Compact Disc Digital Audio and Digital Audio Tape systems use different sampling rates, and American television, European television, and movies all use different frame rates.