Nombre de ReynoldsEn mécanique des fluides, le , noté , est un nombre sans dimension caractéristique de la transition laminaire-turbulent. Il est mis en évidence en par Osborne Reynolds. Le nombre de Reynold est applicable à tout écoulement de fluide visqueux, et prévoit son régime. Pour des petites valeurs de , le régime est dominé par la viscosité et l'écoulement est laminaire. Pour les grandes valeurs de , le régime est dominé par l'inertie et l'écoulement est turbulent.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.
Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Cauchy boundary conditionIn mathematics, a Cauchy (koʃi) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.
Condition aux limites mêléeEn mathématiques, une condition aux limites mêlée ou mixte correspond à la juxtaposition de différentes conditions aux limites sur différentes parties du bord (ou frontière) du domaine dans lequel est posée une équation aux dérivées partielles ou une équation différentielle ordinaire. Par exemple, si l'on considère les vibrations d'une corde élastique de longueur L se déplaçant à une vitesse c dont une extrémité (en 0) est fixe, et l'autre (en L) est attachée à un anneau oscillant librement le long d'une tige droite, on a alors une équation sur un intervalle [0,L].
Équations de Navier-Stokesthumb|Léonard de Vinci : écoulement dans une fontaine En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides newtoniens (donc des gaz et de la majeure partie des liquides). La résolution de ces équations modélisant un fluide comme un milieu continu à une seule phase est difficile, et l'existence mathématique de solutions des équations de Navier-Stokes n'est pas démontrée.
Méthode de GalerkineEn mathématiques, dans le domaine de l'analyse numérique, les méthodes de Galerkine sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est attribuée aux ingénieurs russes Ivan Boubnov (1911) et Boris Galerkine (1913). Cette méthode est couramment utilisée dans la méthode des éléments finis. On part de la formulation faible du problème. La solution appartient à un espace fonctionnel satisfaisant des propriétés de régularité bien définies.