Interpolation polynomialeEn mathématiques, en analyse numérique, l'interpolation polynomiale est une technique d'interpolation d'un ensemble de données ou d'une fonction par un polynôme. En d'autres termes, étant donné un ensemble de points (obtenu, par exemple, à la suite d'une expérience), on cherche un polynôme qui passe par tous ces points, p(xi) = yi, et éventuellement vérifie d'autres conditions, de degré si possible le plus bas. Cependant, dans le cas de l'interpolation lagrangienne, par exemple, le choix des points d'interpolation est critique.
Fonction hyperboliqueEn mathématiques, on appelle fonctions hyperboliques les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique. Les noms « sinus », « cosinus » et « tangente » proviennent de leur ressemblance avec les fonctions trigonométriques (dites « circulaires » car en relation avec le cercle unité x + y = 1) et le terme « hyperbolique » provient de leur relation avec l'hyperbole d'équation x – y = 1. Elles sont utilisées en analyse pour le calcul intégral, la résolution des équations différentielles mais aussi en géométrie hyperbolique.
Méthode de GalerkineEn mathématiques, dans le domaine de l'analyse numérique, les méthodes de Galerkine sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est attribuée aux ingénieurs russes Ivan Boubnov (1911) et Boris Galerkine (1913). Cette méthode est couramment utilisée dans la méthode des éléments finis. On part de la formulation faible du problème. La solution appartient à un espace fonctionnel satisfaisant des propriétés de régularité bien définies.
Polynôme de Legendrethumb|upright=1.5|Polynômes de Legendre En mathématiques et en physique théorique, les polynômes de Legendre constituent l'exemple le plus simple d'une suite de polynômes orthogonaux. Ce sont des solutions polynomiales P(x), sur l'intervalle x ∈ [–1, 1], de l'équation différentielle de Legendre : dans le cas particulier où le paramètre n est un entier naturel. De façon équivalente, les polynômes de Legendre sont les fonctions propres de l'endomorphisme de R[X] défini par : pour les valeurs propres .
Sinus hyperbolique réciproqueLe sinus hyperbolique réciproque est, en mathématiques, une fonction hyperbolique. La fonction sinus hyperbolique réciproque, ou argument sinus hyperbolique, notée arsinh (ou argsh), est définie à l'aide du sinus hyperbolique par : Cette fonction est bijective et son est . Elle est continue, impaire, strictement croissante, convexe sur et concave sur . Sa en 0 est 0 et sa limite en +∞ est +∞. Elle est dérivable sur et sa dérivée est donnée par : Par conséquent : la fonction arsinh s'exprime à l'aide du log
Test suiteIn software development, a test suite, less commonly known as a validation suite, is a collection of test cases that are intended to be used to test a software program to show that it has some specified set of behaviors. A test suite often contains detailed instructions or goals for each collection of test cases and information on the system configuration to be used during testing. A group of test cases may also contain prerequisite states or steps, and descriptions of the following tests.
Groupe hyperboliqueEn théorie géométrique des groupes — une branche des mathématiques — un groupe hyperbolique, ou groupe à courbure négative, est un groupe de type fini muni d'une métrique des mots vérifiant certaines propriétés caractéristiques de la géométrie hyperbolique. Cette notion a été introduite et développée par Mikhaïl Gromov au début des années 1980. Il avait remarqué que beaucoup de résultats de Max Dehn concernant le groupe fondamental d'une surface de Riemann hyperbolique ne reposaient pas sur le fait qu'elle soit de 2 ni même que ce soit une variété, mais restaient vrais dans un contexte beaucoup plus général.
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Équation sextiquevignette|Fonction sextique possédant 6 zéros. Une fonction sextique possède toujours 6 zéros complexes ou réels. Le nombre de zéros complexes est égal à 6-n, où n est le nombre de zéros réels, compris entre 0 et 6. Une équation sextique est une équation polynomiale de degré 6 de la forme , où sont des coefficients réels ou complexes (ou appartenant à n'importe quel corps). On a spécifiquement . Une telle équation est obtenu à partir d'un polynôme , où est une fonction sextique de la forme , .
Réseau électriqueUn réseau électrique est un ensemble d'infrastructures énergétiques plus ou moins disponibles permettant d'acheminer l'électricité des centres de production vers les consommateurs. Il est constitué de lignes électriques exploitées à différents niveaux de tension, connectées entre elles dans des postes électriques. Les postes électriques permettent de répartir l'électricité et de la faire passer d'une tension à l'autre grâce aux transformateurs.