Band bendingIn solid-state physics, band bending refers to the process in which the electronic band structure in a material curves up or down near a junction or interface. It does not involve any physical (spatial) bending. When the electrochemical potential of the free charge carriers around an interface of a semiconductor is dissimilar, charge carriers are transferred between the two materials until an equilibrium state is reached whereby the potential difference vanishes.
Dihedral symmetry in three dimensionsIn geometry, dihedral symmetry in three dimensions is one of three infinite sequences of point groups in three dimensions which have a symmetry group that as an abstract group is a dihedral group Dihn (for n ≥ 2). There are 3 types of dihedral symmetry in three dimensions, each shown below in 3 notations: Schönflies notation, Coxeter notation, and orbifold notation. Chiral Dn, [n,2]+, (22n) of order 2n – dihedral symmetry or para-n-gonal group (abstract group: Dihn).
Spineurvignette|Le cube peut tourner continument sans que les ficelles qui le retiennent s'emmêlent. Après un mouvement de 360°, la configuration a changé. Mais au bout de 720° on revient à la position initiale. Un cube "détaché" se comporte comme un vecteur ordinaire, le cube attaché comme un spineur. Formellement, un spineur est un élément d'un espace de représentation pour le groupe spinoriel.
Représentation irréductibleEn mathématiques et plus précisément en théorie des représentations, une représentation irréductible est une représentation non nulle qui n'admet qu'elle-même et la représentation nulle comme sous-représentations. Le présent article traite des représentations d'un groupe. Le théorème de Maschke démontre que dans de nombreux cas, une représentation est somme directe de représentations irréductibles. Dans le cas des groupes finis, les informations liés aux représentations irréductibles sont encodées dans la table de caractères du groupe.
Icosahedral symmetryIn mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
Réflexion glisséeEn géométrie euclidienne, une réflexion glissée du plan euclidien est une isométrie affine de ce plan, constituée de la composée d'une réflexion par rapport à une droite et d'une translation dans la direction de cette droite. Cette composition est ici commutative. Plus généralement, dans un espace euclidien quelconque, une réflexion glissée est la composée d'une réflexion par rapport à un hyperplan et d'une translation parallèlement à cet hyperplan. Réflexion (mathématiques) Symétrie (transformation géomét
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Équation de MajoranaL'équation de Majorana est une similaire à l'équation de Dirac mais inclut la charge conjuguée Ψc d'un spineur Ψ. Cette équation porte le nom de l'italien Ettore Majorana, et dans les unités naturelles, elle s'exprime par écrit avec la notation de Feynman, où la charge conjuguée est définie par L'équation (1) peut s'exprimer autrement par Si une particule a un spineur de fonction d'onde Ψ qui satisfait l'équation de Majorana, alors la grandeur m de l'équation est appelé la masse de Majorana.
Fonction d'ondethumb|300px|right|Illustration de la notion de fonction d'onde dans le cas d'un oscillateur harmonique. Le comportement en mécanique classique est représenté sur les images A et B et celui en mécanique quantique sur les figures C à H. Les parties réelles et imaginaires des fonctions d'onde sont représentées respectivement en bleu et en rouge. Les images C à F correspondent à des états stationnaires de l'énergie, tandis que les figures G et H correspondent à des états non stationnaires.
Équations de Maxwellvignette|Plaque représentant les équations de Maxwell au pied de la statue en hommage à James Clerk Maxwell d'Edimbourg. Les équations de Maxwell, aussi appelées équations de Maxwell-Lorentz, sont des lois fondamentales de la physique. Elles constituent, avec l'expression de la force électromagnétique de Lorentz, les postulats de base de l'électromagnétisme. Ces équations traduisent sous forme locale différents théorèmes (Gauss, Ampère, Faraday) qui régissaient l'électromagnétisme avant que Maxwell ne les réunisse sous forme d'équations intégrales.