Dilemme biais-varianceEn statistique et en apprentissage automatique, le dilemme (ou compromis) biais–variance est le problème de minimiser simultanément deux sources d'erreurs qui empêchent les algorithmes d'apprentissage supervisé de généraliser au-delà de leur échantillon d'apprentissage : Le biais est l'erreur provenant d’hypothèses erronées dans l'algorithme d'apprentissage. Un biais élevé peut être lié à un algorithme qui manque de relations pertinentes entre les données en entrée et les sorties prévues (sous-apprentissage).
Congestion (réseau)La congestion d'un réseau informatique est la condition dans laquelle une augmentation du trafic (flux) provoque un ralentissement global de celui-ci. Les trames entrantes dans les buffers des commutateurs sont rejetées dans ce cas. La congestion est liée à la politique du multiplexage établie sur le réseau considéré. La congestion peut être aussi liée aux équipements connectés sur le réseau, tels que switch, routeur, ordinateur... Donc pour résoudre ce problème le gestionnaire de réseau doit faire d'abord un troubleshoot pour identifier le problème.
Pooled varianceIn statistics, pooled variance (also known as combined variance, composite variance, or overall variance, and written ) is a method for estimating variance of several different populations when the mean of each population may be different, but one may assume that the variance of each population is the same. The numerical estimate resulting from the use of this method is also called the pooled variance. Under the assumption of equal population variances, the pooled sample variance provides a higher precision estimate of variance than the individual sample variances.
Moyenne pondéréeLa moyenne pondérée est la moyenne d'un certain nombre de valeurs affectées de coefficients. En statistiques, considérant un ensemble de données et les coefficients, ou poids, correspondants, de somme non nulle, la moyenne pondérée est calculée suivant la formule : quotient de la somme pondérée des par la somme des poids soit Il s'agit donc du barycentre du système . Lorsque tous les poids sont égaux, la moyenne pondérée est identique à la moyenne arithmétique.
Système d'équations linéairesEn mathématiques et particulièrement en algèbre linéaire, un système d'équations linéaires est un système d'équations constitué d'équations linéaires qui portent sur les mêmes inconnues. Par exemple : Le problème est de trouver les valeurs des inconnues , et qui satisfassent les trois équations simultanément. La résolution des systèmes d'équations linéaires appartient aux problèmes les plus anciens dans les mathématiques et ceux-ci apparaissent dans beaucoup de domaines, comme en traitement numérique du signal, en optimisation linéaire, ou dans l'approximation de problèmes non linéaires en analyse numérique.
Théorème du rangEn mathématiques, et plus précisément en algèbre linéaire, le théorème du rang lie le rang d'une application linéaire et la dimension de son noyau. C'est un corollaire d'un théorème d'isomorphisme. Il peut être interprété par la notion d'indice d'application linéaire. En dimension finie, il permet notamment de caractériser l'inversibilité d'une application linéaire ou d'une matrice par son rang. vignette|Le théorème du rang.
Kernel (linear algebra)In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map L : V → W between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically: The kernel of L is a linear subspace of the domain V.
Moment magnétiqueEn physique, le moment magnétique est une grandeur vectorielle qui permet de caractériser l'intensité d'une source magnétique. Cette source peut être un courant électrique, ou bien un objet aimanté. L'aimantation est la distribution spatiale du moment magnétique. Le moment magnétique d'un corps se manifeste par la tendance qu'a ce corps à s'aligner dans le sens d'un champ magnétique, c'est par exemple le cas de l'aiguille d'une boussole : le moment que subit l'objet est égal au produit vectoriel de son moment magnétique par le champ magnétique dans lequel il est placé.
Taux d'intérêt réelEn économie et en sciences actuarielles, le taux d'intérêt réel est le taux d'intérêt nominal auquel on doit effectuer une correction afin qu'il tienne compte du taux d'inflation et de la prime de risque. Avec un taux d'intérêt nominal et un taux d'inflation , tous deux mesurés sur une même période, l'équation du taux d'intérêt réel, noté , sur cette période est la suivante: Il est possible, de façon intuitive, d'approximer le taux d'intérêt réel de la façon suivante : En fait, cette équation approximative peut être déterminée ex post grâce à l'équation de Fisher : Où est le taux d'intérêt réel, le taux d'intérêt nominal, et le taux d'inflation.
Plus-valueLa plus-value est l'augmentation de valeur qu'un bien peut avoir acquise entre une certaine date et le jour de son acquisition, par l'amélioration qualitative de ce bien, l'augmentation de la demande du marché ou de la spéculation. Cette différence, calculée au moment d'une cession, peut induire la perception d'un impôt sur les plus-values. En France, une plus-value effectivement réalisée est généralement soumise à un impôt sur les plus-values.