Géométrie riemanniennevignette|275px|L'étude de la forme de l'univers est une adaptation des idées et méthodes de la géométrie riemannienne La géométrie riemannienne est une branche de la géométrie différentielle nommée en l'honneur du mathématicien Bernhard Riemann, qui introduisit les concepts fondateurs de variété géométrique et de courbure. Il s'agit de surfaces ou d'objets de plus grande dimension sur lesquels existent des notions d'angle et de longueur, généralisant la géométrie traditionnelle qui se limitait à l'espace euclidien.
Fibré cotangentEn géométrie différentielle, le fibré cotangent associé à une variété différentielle M est le fibré vectoriel T*M de son fibré tangent TM : en tout point m de M, l' est défini comme l'espace dual de l'espace tangent : Les sections lisses du fibré cotangent sont les 1-formes différentielles, l'une d'entre elles étant remarquable et appelée 1-forme tautologique (ou 1-forme de Poincaré, ou 1-forme de Liouville, ou 1-forme canonique, ou potentiel symplectique). Sa dérivée extérieure donne une 2-forme symplectique canonique.
OrbifoldEn mathématiques, un orbifold (parfois appelé aussi orbivariété) est une généralisation de la notion de variété contenant de possibles singularités. Ces espaces ont été introduits explicitement pour la première fois par Ichirō Satake en 1956 sous le nom de V-manifolds. Pour passer de la notion de variété (différentiable) à celle d'orbifold, on ajoute comme modèles locaux tous les quotients d'ouverts de par l'action de groupes finis. L'intérêt pour ces objets a été ravivé considérablement à la fin des années 70 par William Thurston en relation avec sa conjecture de géométrisation.
Webbed spaceIn mathematics, particularly in functional analysis, a webbed space is a topological vector space designed with the goal of allowing the results of the open mapping theorem and the closed graph theorem to hold for a wider class of linear maps whose codomains are webbed spaces. A space is called webbed if there exists a collection of sets, called a web that satisfies certain properties. Webs were first investigated by de Wilde. Let be a Hausdorff locally convex topological vector space.
Lie algebroidIn mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra. Lie algebroids play a similar same role in the theory of Lie groupoids that Lie algebras play in the theory of Lie groups: reducing global problems to infinitesimal ones. Indeed, any Lie groupoid gives rise to a Lie algebroid, which is the vertical bundle of the source map restricted at the units.
Espace pointéEn topologie, un espace pointé est un espace topologique dont on spécifie un point particulier comme étant le point de base. Formellement, il s'agit donc d'un couple (E, x) pour lequel x est un élément de E. Une application pointée entre deux espaces pointés est une application continue préservant les points de base. Les espaces pointés sont les objets d'une catégorie, notée parfois Top, dont les morphismes sont les applications pointées. Cette catégorie admet le point comme objet nul.
Cotangent spaceIn differential geometry, the cotangent space is a vector space associated with a point on a smooth (or differentiable) manifold ; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, is defined as the dual space of the tangent space at , , although there are more direct definitions (see below). The elements of the cotangent space are called cotangent vectors or tangent covectors. All cotangent spaces at points on a connected manifold have the same dimension, equal to the dimension of the manifold.
Catégorie groupoïdeEn mathématiques, et plus particulièrement en théorie des catégories et en topologie algébrique, la notion de groupoïde généralise à la fois les notions de groupe, de relation d'équivalence sur un ensemble, et de l'action d'un groupe sur un ensemble. Elle a été initialement développée par Heinrich Brandt en 1927. Les groupoïdes sont souvent utilisés pour représenter certaines informations sur des objets topologiques ou géométriques comme les variétés. Un groupoïde est une petite catégorie dans laquelle tout morphisme est un isomorphisme.
Topologie quotientEn mathématiques, la topologie quotient consiste intuitivement à créer une topologie en collant certains points d'un espace donné sur d'autres, par le biais d'une relation d'équivalence bien choisie. Cela est souvent fait dans le but de construire de nouveaux espaces à partir d'anciens. On parle alors d'espace topologique quotient. Beaucoup d'espaces intéressants, le cercle, les tores, le ruban de Möbius, les espaces projectifs sont définis comme des quotients.
HolonomieEn mathématiques, et plus précisément en géométrie différentielle, l'holonomie d'une connexion sur une variété différentielle est une mesure de la façon dont le transport parallèle le long de boucles fermées modifie les informations géométriques transportées. Cette modification est une conséquence de la courbure de la connexion (ou plus généralement de sa "forme"). Pour des connexions plates, l'holonomie associée est un type de monodromie, et c'est dans ce cas une notion uniquement globale.