Problème de satisfaction de contraintesLes problèmes de satisfaction de contraintes ou CSP (Constraint Satisfaction Problem) sont des problèmes mathématiques où l'on cherche des états ou des objets satisfaisant un certain nombre de contraintes ou de critères. Les CSP font l'objet de recherches intenses à la fois en intelligence artificielle et en recherche opérationnelle. De nombreux CSP nécessitent la combinaison d'heuristiques et de méthodes d'optimisation combinatoire pour être résolus en un temps raisonnable.
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Système d'équations linéairesEn mathématiques et particulièrement en algèbre linéaire, un système d'équations linéaires est un système d'équations constitué d'équations linéaires qui portent sur les mêmes inconnues. Par exemple : Le problème est de trouver les valeurs des inconnues , et qui satisfassent les trois équations simultanément. La résolution des systèmes d'équations linéaires appartient aux problèmes les plus anciens dans les mathématiques et ceux-ci apparaissent dans beaucoup de domaines, comme en traitement numérique du signal, en optimisation linéaire, ou dans l'approximation de problèmes non linéaires en analyse numérique.
Optimisation multidisciplinaireL'Optimisation de Conception Multidisciplinaire (OMD ou MDO, Multidisciplinary Design Optimisation, en anglais) est un domaine d'ingénierie qui utilise des méthodes d'optimisation afin de résoudre des problèmes de conception mettant en œuvre plusieurs disciplines. La MDO permet aux concepteurs d'incorporer les effets de chacune des disciplines en même temps. L'optimum global ainsi trouvé est meilleur que la configuration trouvée en optimisant chaque discipline indépendamment des autres, car l'on prend en compte les interactions entre les disciplines.
Environnement de bureauEn informatique, un environnement de bureau (de l'anglais desktop environment) est un logiciel (ensemble de programmes) qui permet de manier l'ordinateur à travers une interface utilisateur qui se présente en mode graphique (graphical shell) sous l'aspect d'un bureau. Il s'agit d'un type d'environnement graphique où le terme « environnement de bureau » provient de la métaphore du bureau, sur laquelle sont fondés ces produits. De nombreux systèmes d'exploitation ont un environnement de bureau incorporé.
Agent logicielEn informatique, un agent ou agent logiciel (du latin agere : agir) est un logiciel qui agit de façon autonome. C'est un programme qui accomplit des tâches à la manière d'un automate et en fonction de ce que lui a demandé son auteur. Dans le contexte d'Internet, les agents intelligents sont liés au Web sémantique, dans lequel ils sont utilisés pour faire à la place des humains les recherches et les corrélations entre les résultats de ces recherches. Ceci se fait en fonction de règles prédéfinies.
Agent-based modelAn agent-based model (ABM) is a computational model for simulating the actions and interactions of autonomous agents (both individual or collective entities such as organizations or groups) in order to understand the behavior of a system and what governs its outcomes. It combines elements of game theory, complex systems, emergence, computational sociology, multi-agent systems, and evolutionary programming. Monte Carlo methods are used to understand the stochasticity of these models.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Fonction linéaire (analyse)Dans les mathématiques élémentaires, les fonctions linéaires sont parmi les fonctions les plus simples que l'on rencontre. Ce sont des cas particuliers d'applications linéaires. Elles traduisent la proportionnalité. Par exemple, on dira que le prix d'un plein d'essence est fonction linéaire du nombre de litres mis dans le réservoir car : pour zéro litre, on paie zéro euro ; pour un litre, on paie 1,40 euro ; pour 2 litres on paie 2,80 euros ; pour 10 litres on paie 14 euros ; pour 100 litres on paie 140 euros ; et pour N litres, on paie 1,4 × N euros.
Optimisation linéaire en nombres entiersL'optimisation linéaire en nombres entiers (OLNE) (ou programmation linéaire en nombres entiers (PLNE) ou integer programming (IP) ou Integer Linear Programming (ILP)) est un domaine des mathématiques et de l'informatique théorique dans lequel on considère des problèmes d'optimisation d'une forme particulière. Ces problèmes sont décrits par une fonction de coût et des contraintes linéaires, et par des variables entières.