Opérateur hamiltonienL’opérateur de Hamilton, opérateur hamiltonien ou tout simplement hamiltonien est un opérateur mathématique possédant de nombreuses applications dans divers domaines de la physique. D'après Jérôme Pérez, l'opérateur hamiltonien a été développé en 1811 par Joseph-Louis Lagrange alors qu'Hamilton n'avait que 6 ans. Lagrange a explicitement écrit : formule dans laquelle faisait référence à Christiaan Huygens et qu'il aurait appelé Huygensien.
Isotropic lineIn the geometry of quadratic forms, an isotropic line or null line is a line for which the quadratic form applied to the displacement vector between any pair of its points is zero. An isotropic line occurs only with an isotropic quadratic form, and never with a definite quadratic form. Using complex geometry, Edmond Laguerre first suggested the existence of two isotropic lines through the point (α, β) that depend on the imaginary unit i: First system: Second system: Laguerre then interpreted these lines as geodesics: An essential property of isotropic lines, and which can be used to define them, is the following: the distance between any two points of an isotropic line situated at a finite distance in the plane is zero.
Adjugate matrixIn linear algebra, the adjugate or classical adjoint of a square matrix A is the transpose of its cofactor matrix and is denoted by adj(A). It is also occasionally known as adjunct matrix, or "adjoint", though the latter term today normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose. The product of a matrix with its adjugate gives a diagonal matrix (entries not on the main diagonal are zero) whose diagonal entries are the determinant of the original matrix: where I is the identity matrix of the same size as A.
Matrice de VandermondeEn algèbre linéaire, une matrice de Vandermonde est une matrice avec une progression géométrique dans chaque ligne. Elle tient son nom du mathématicien français Alexandre-Théophile Vandermonde. De façon matricielle, elle se présente ainsi : Autrement dit, pour tous i et j, le coefficient en ligne i et colonne j est Remarque. Certains auteurs utilisent la transposée de la matrice ci-dessus. On considère une matrice V de Vandermonde carrée (). Elle est inversible si et seulement si les sont deux à deux distincts.
Two-state quantum systemIn quantum mechanics, a two-state system (also known as a two-level system) is a quantum system that can exist in any quantum superposition of two independent (physically distinguishable) quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit. Two-state systems are the simplest quantum systems that are of interest, since the dynamics of a one-state system is trivial (as there are no other states the system can exist in).
Logique quantiqueLa logique quantique est la base de raisonnements et conclusions en accord avec les postulats de la mécanique quantique. En particulier, les observables n'étant pas forcément commutatives, le théorème d'Heisenberg (cf. le principe d'incertitude), entraîne la notion d'intricats, notion purement quantique comme l'illustre celle de chat mort & vivant du célèbre paradoxe du chat de Schrödinger. John von Neumann a montré, en réfléchissant aux fondations de la mécanique quantique, que la logique d'Aristote (cf.
Jordan matrixIn the mathematical discipline of matrix theory, a Jordan matrix, named after Camille Jordan, is a block diagonal matrix over a ring R (whose identities are the zero 0 and one 1), where each block along the diagonal, called a Jordan block, has the following form: Every Jordan block is specified by its dimension n and its eigenvalue , and is denoted as Jλ,n. It is an matrix of zeroes everywhere except for the diagonal, which is filled with and for the superdiagonal, which is composed of ones.
Function of a real variableIn mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers , or a subset of that contains an interval of positive length. Most real functions that are considered and studied are differentiable in some interval. The most widely considered such functions are the real functions, which are the real-valued functions of a real variable, that is, the functions of a real variable whose codomain is the set of real numbers.
Dérivée fonctionnelleLa dérivée fonctionnelle est un outil mathématique du calcul des variations. Elle exprime la variation d'une fonctionnelle résultant d'une variation infinitésimale de la fonction fournie en argument. Cet outil est principalement utilisé pour trouver les extremums d'une fonctionnelle. En physique il est souvent nécessaire de minimiser une fonctionnelle, par exemple en mécanique analytique où la trajectoire suivie par un système doit minimiser l'action (voir principe de moindre action).
CoefficientUn coefficient est un facteur constant, exprimé par un nombre ou par un symbole qui le représente, qui s’applique à une grandeur variable (grandeur physique ou variable mathématique). En physique par exemple, quand la vitesse d’un solide mobile est constante, la distance parcourue est proportionnelle à la durée du parcours, la vitesse étant le coefficient de proportionnalité à appliquer à une durée donnée pour obtenir la distance parcourue pendant ce temps.