Géométrie hyperboliqueEn mathématiques, la géométrie hyperbolique (nommée auparavant géométrie de Lobatchevski, lequel est le premier à en avoir publié une étude approfondie) est une géométrie non euclidienne vérifiant les quatre premiers postulats d’Euclide, mais pour laquelle le cinquième postulat, qui équivaut à affirmer que par un point extérieur à une droite passe une et une seule droite qui lui est parallèle, est remplacé par le postulat selon lequel « par un point extérieur à une droite passent plusieurs droites parallèle
Finite measureIn measure theory, a branch of mathematics, a finite measure or totally finite measure is a special measure that always takes on finite values. Among finite measures are probability measures. The finite measures are often easier to handle than more general measures and show a variety of different properties depending on the sets they are defined on. A measure on measurable space is called a finite measure if it satisfies By the monotonicity of measures, this implies If is a finite measure, the measure space is called a finite measure space or a totally finite measure space.
Variété hyperboliquethumb|Une projection en perspective d'un pavage dodécahédrique dans H3. C'est un exemple de ce qu'un observateur pourrait observer à l'intérieur d'une 3-variété hyperbolique thumb|La pseudosphère : chaque moitié de cette forme est une surface hyperbolique à bord. En mathématiques, une variété hyperbolique est un espace dans lequel chaque point apparaît localement comme d'une certaine dimension. Ces variétés sont spécifiquement étudiées en dimensions 2 et 3, où elles sont appelées respectivement surfaces de Riemann et .
Hyperbolic spaceIn mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.
Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.
Injections de SobolevEn mathématiques, les inégalités de Sobolev sont des résultats mettant en relation des normes dont celles des espaces de Sobolev. Ces inégalités sont utilisées pour démontrer le théorème de plongement de Sobolev (injection), qui permet d'énoncer des inclusions entre certains espaces de Sobolev, mais aussi le théorème de Rellich – Kondrachov qui montre que dans des conditions légèrement plus fortes, certains espaces de Sobolev peuvent s'injecter de manière compacte dans d'autres espaces.
Constantin CarathéodoryConstantin Carathéodory (Κωνσταντῖνος Καραθεoδωρῆς) (né le à Berlin et mort le à Munich) est un mathématicien grec auteur d'importants travaux en théorie des fonctions à variables réelles, calcul des variations et théorie de la mesure. En 1909, Carathéodory fit œuvre de pionnier dans la formulation axiomatique de la thermodynamique en utilisant une approche purement géométrique. Constantin Carathéodory naît à Berlin de parents grecs phanariotes, puis il grandit à Bruxelles, où son père Stéphane Carathéodory était ambassadeur de l'Empire ottoman en Belgique.
ThéorieUne théorie (du grec theoria, « contempler, observer, examiner ») est un ensemble cohérent, si elle prétend à la scientificité, d'explications, de notions ou d'idées sur un sujet précis, pouvant inclure des lois et des hypothèses, induites par l'accumulation de faits provenant de l'observation, l'expérimentation ou, dans le cas des mathématiques, déduites d'une base axiomatique donnée : théorie des matrices, des torseurs, des probabilités.
Espace polonaisEn mathématiques, un espace métrisable à base dénombrable (ou séparable, cela revient au même pour un espace métrisable) est un espace polonais si sa topologie peut être définie par une distance qui en fait un espace complet. Tout espace compact métrisable, tout sous-espace fermé ou ouvert d'un espace polonais, tout produit dénombrable d'espaces polonais, tout espace de Banach séparable est un espace polonais. Cette terminologie a été introduite par le groupe Bourbaki, dans le volume sur la topologie générale de ses Éléments de mathématique.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.