Publication

A heuristic for nonlinear global optimization

Résumé

We propose a new heuristic for nonlinear global optimization combining a variable neighborhood search framework with a modified trust-region algorithm as local search. The proposed method presents the capability to prematurely interrupt the local search if the iterates are converging to a local minimum which has already been visited or if they are reaching an area where no significant improvement can be expected. The neighborhoods as well as the neighbors selection procedure are exploiting the curvature of the objective function. Numerical tests are performed on a set of unconstrained nonlinear problems from the literature. Results illustrate that the new method significantly outperforms existing heuristics from the literature in terms of success rate, CPU time, and number of function evaluations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.