Linear time-invariant systemIn system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (x ∗ h)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication).
Loi commutativeEn mathématiques, et plus précisément en algèbre générale, une loi de composition interne sur un ensemble E est dite commutative si pour tous x et y dans E, En notant , la commutativité se traduit par le diagramme commutatif suivant : Fichier:Commutativité.png Les exemples les plus simples de lois commutatives sont sans doute l'addition et la multiplication des entiers naturels. L'addition et la multiplication des nombres réels et des nombres complexes, l'addition des vecteurs, l'intersection et la réunion des ensembles sont également des lois commutatives.
Méthodes de Runge-KuttaLes méthodes de Runge-Kutta sont des méthodes d'analyse numérique d'approximation de solutions d'équations différentielles. Elles ont été nommées ainsi en l'honneur des mathématiciens Carl Runge et Martin Wilhelm Kutta, lesquels élaborèrent la méthode en 1901. Ces méthodes reposent sur le principe de l'itération, c'est-à-dire qu'une première estimation de la solution est utilisée pour calculer une seconde estimation, plus précise, et ainsi de suite. Considérons le problème suivant : que l'on va chercher à résoudre en un ensemble discret t < t < .
Anneau commutatifUn anneau commutatif est un anneau dans lequel la loi de multiplication est commutative. L’étude des anneaux commutatifs s’appelle l’algèbre commutative. Un anneau commutatif est un anneau (unitaire) dans lequel la loi de multiplication est commutative. Dans la mesure où les anneaux commutatifs sont des anneaux particuliers, nombre de concepts de théorie générale des anneaux conservent toute leur pertinence et leur utilité en théorie des anneaux commutatifs : ainsi ceux de morphismes d'anneaux, d'idéaux et d'anneaux quotients, de sous-anneaux, d'éléments nilpotents.
Pseudo-inverseEn mathématiques, et plus précisément en algèbre linéaire, la notion de pseudo-inverse (ou inverse généralisé) généralise celle d’inverse d’une application linéaire ou d’une matrice aux cas non inversibles en lui supprimant certaines des propriétés demandées aux inverses, ou en l’étendant aux espaces non algébriques plus larges. En général, il n’y a pas unicité du pseudo-inverse. Son existence, pour une application linéaire entre espaces de dimension éventuellement infinie, est équivalente à l'existence de supplémentaires du noyau et de l'image.
Consistent estimatorIn statistics, a consistent estimator or asymptotically consistent estimator is an estimator—a rule for computing estimates of a parameter θ0—having the property that as the number of data points used increases indefinitely, the resulting sequence of estimates converges in probability to θ0. This means that the distributions of the estimates become more and more concentrated near the true value of the parameter being estimated, so that the probability of the estimator being arbitrarily close to θ0 converges to one.
Algèbre commutativevignette|Propriété universelle du produit tensoriel de deux anneaux commutatifs En algèbre générale, l’algèbre commutative est la branche des mathématiques qui étudie les anneaux commutatifs, leurs idéaux, les modules et les algèbres. Elle est fondamentale pour la géométrie algébrique et pour la théorie algébrique des nombres. David Hilbert est considéré comme le véritable fondateur de cette discipline appelée initialement la « théorie des idéaux ».
Diagramme commutatifEn mathématiques, et plus spécialement dans les applications de la théorie des catégories, un diagramme commutatif est un diagramme d'objets et de morphismes tels que, si l'on suit à travers le diagramme un chemin d'un objet à un autre, le résultat par composition des morphismes ne dépend que de l'objet de départ et de l'objet d'arrivée. Cette définition peut être visualisée par le dessin élémentaire ci-contre. On se place dans la catégorie Ens. Les objets sont les ensembles A, B et C en réalité tous égaux ici à {1,2,3,4}.
AnticommutativitéEn mathématiques, l'anticommutativité est la propriété caractérisant les opérations pour lesquelles intervertir deux arguments transforme le résultat en son opposé. Par exemple, une opération binaire ✻ est anticommutative si Cette propriété intervient en algèbre, en géométrie, en analyse et, par conséquent, en physique. Étant donné un entier naturel n, une opération n-aire est dite anticommutative si intervertir deux arguments transforme le résultat en son opposé.
AssociativitéEn mathématiques, et plus précisément en algèbre générale, une loi de composition interne ou loi interne sur un ensemble E est dite associative si pour tous x, y et z dans E : En notant , l'associativité se traduit par le diagramme commutatif suivant : Parmi les lois associatives, on peut citer les lois d'addition et de multiplication des nombres réels, des nombres complexes et des matrices carrées, l'addition des vecteurs, et l'intersection, la réunion d'ensembles.