Plasma stabilityThe stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. In many cases, a plasma can be treated as a fluid and its stability analyzed with magnetohydrodynamics (MHD).
MagnétohydrodynamiqueLa magnétohydrodynamique (MHD) est une discipline scientifique qui décrit le comportement d'un fluide conducteur du courant électrique en présence de champs électromagnétiques. Elle s'applique notamment aux plasmas, au noyau externe et même à l'eau de mer. C'est une généralisation de l'hydrodynamique (appelée plus communément dynamique des fluides, définie par les équations de Navier-Stokes) couplée à l'électromagnétisme (équations de Maxwell).
Générateur MHDUn générateur MHD (magnétohydrodynamique) est un convertisseur MHD, qui transforme l'énergie cinétique d'un fluide conducteur directement en électricité. Le principe de base est fondamentalement le même que pour n'importe quel générateur électrique. Les deux types de générateur utilisent tous deux un inducteur (électro-aimant) générant un champ magnétique dans un induit. Dans le cas d'un générateur conventionnel, cet induit est solide : c'est une bobine constituée d'un enroulement de fil métallique.
Théorème d'AlfvénEn magnétohydrodynamique, le théorème d'Alfvén établit que dans un fluide dont la conductivité électrique est infinie, les lignes de champ magnétique sont "gelées" à l'intérieur de ce fluide et qu'elles sont donc contraintes de se déplacer avec celui-ci. Le physicien Hannes Alfvén fit pour la première fois part de cette idée en 1942. Il est à noter que dans la plupart des milieux étudiés en astrophysique, aussi bien que dans les conditions d'étude des plasmas en laboratoire, du fait que la conductivité électrique n'est pas infinie, les lignes de champ magnétique ne sont pas idéalement piégées à l'intérieur des fluides.
Tokamakthumb|Vue intérieure du tore du Tokamak à configuration variable (TCV), dont les parois sont recouvertes de tuiles de graphite. Un tokamak est un dispositif de confinement magnétique expérimental explorant la physique des plasmas et les possibilités de produire de l'énergie par fusion nucléaire. Il existe deux types de tokamaks aux caractéristiques sensiblement différentes, les tokamaks traditionnels toriques (objet de cet article) et les tokamaks sphériques.
Induction equationIn magnetohydrodynamics, the induction equation is a partial differential equation that relates the magnetic field and velocity of an electrically conductive fluid such as a plasma. It can be derived from Maxwell's equations and Ohm's law, and plays a major role in plasma physics and astrophysics, especially in dynamo theory. Maxwell's equations describing the Faraday's and Ampere's laws read: and where: is the electric field. is the magnetic field. is the electric current density.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.