Laser à électrons libresUn laser à électrons libres (en free electron laser : FEL) est un type de laser qui fonctionne en utilisant des électrons qui ne sont pas liés à un atome, d’où l'adjectif « libres », pour créer des photons. La lumière produite est à la fois cohérente, intense et peut avoir une longueur d'onde située dans une large gamme, depuis les micro-ondes jusqu'aux rayons X durs, en passant par l'ultra-violet, le domaine visible et l'infrarouge. Les lasers à électrons libres ont été suggérés en 1971 par le physicien John M.
Laserthumb|250px|Lasers rouges (660 & ), verts (532 & ) et bleus (445 & ). thumb|250px|Rayon laser à travers un dispositif optique. thumb|250px|Démonstration de laser hélium-néon au laboratoire Kastler-Brossel à l'Université Pierre-et-Marie-Curie. Un laser (acronyme issu de l'anglais light amplification by stimulated emission of radiation qui signifie « amplification de la lumière par émission stimulée de radiation ») est un système photonique.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Polynôme de LaguerreEn mathématiques, les polynômes de Laguerre, nommés d'après Edmond Laguerre, sont les solutions normalisées de l'équation de Laguerre : qui est une équation différentielle linéaire homogène d'ordre 2 et se réécrit sous la forme de Sturm-Liouville : Cette équation a des solutions non singulières seulement si n est un entier positif. Les solutions L forment une suite de polynômes orthogonaux dans L (R, edx), et la normalisation se fait en leur imposant d'être de norme 1, donc de former une famille orthonormale.
UndulatorAn undulator is an insertion device from high-energy physics and usually part of a larger installation, a synchrotron storage ring, or it may be a component of a free electron laser. It consists of a periodic structure of dipole magnets. These can be permanent magnets or superconducting magnets. The static magnetic field alternates along the length of the undulator with a wavelength . Electrons traversing the periodic magnet structure are forced to undergo oscillations and thus to radiate energy.
Rayonnement ionisantvignette|Pouvoir de pénétration (exposition externe).Le rayonnement alpha (constitué de noyaux d'hélium) est arrêté par une simple feuille de papier.Le rayonnement bêta (constitué d'électrons ou de positons) est arrêté par une plaque d'aluminium.Le rayonnement gamma, constitué de photons très énergétiques, est atténué (et non arrêté) quand il pénètre de la matière dense, ce qui le rend particulièrement dangereux pour les organismes vivants.Il existe d'autres types de rayonnements ionisants.
Synchrotron light sourceA synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices (undulators or wigglers) in storage rings and free electron lasers.
Méthodes de quadrature de GaussDans le domaine mathématique de l'analyse numérique, les méthodes de quadrature sont des approximations de la valeur numérique d'une intégrale. En général, on remplace le calcul de l'intégrale par une somme pondérée prise en un certain nombre de points du domaine d'intégration (voir calcul numérique d'une intégrale pour plus d'informations). La méthode de quadrature de Gauss, du nom de Carl Friedrich Gauss, est une méthode de quadrature exacte pour un polynôme de degré 2n – 1 avec n points pris sur le domaine d'intégration.
Generalized hypergeometric functionIn mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by n is a rational function of n. The series, if convergent, defines a generalized hypergeometric function, which may then be defined over a wider domain of the argument by analytic continuation. The generalized hypergeometric series is sometimes just called the hypergeometric series, though this term also sometimes just refers to the Gaussian hypergeometric series.
Fonction hypergéométrique confluentevignette|Fonction hypergéométrique confluente. La fonction hypergéométrique confluente (ou fonction de Kummer) est : où désigne le symbole de Pochhammer. Elle est solution de l'équation différentielle d'ordre deux, appelée équation de Kummer : Elle est aussi définie par : Les fonctions de Bessel, la fonction gamma incomplète, les fonctions génératrices des moments des distributions bêta et bêta prime, les fonctions cylindre parabolique ou encore les polynômes d'Hermite et les polynômes de Laguerre peuvent être représentés à l'aide de fonctions hypergéométriques confluentes (cf.