Dynamique holomorpheLa dynamique holomorphe est un domaine de l'analyse complexe et des systèmes dynamiques s'intéressant principalement à l'étude de l'itération des applications holomorphes. La dynamique holomorphe provient initialement de l'étude de la méthode de Newton faite par le mathématicien allemand Ernst Schröder dans les années 1870. Cette méthode, qui revient à itérer une certaine fraction rationnelle particulière, est ensuite généralisée à l'itération de fractions rationnelles quelconques.
PrédationLa prédation est l'action de prendre, de capturer. Ce terme est un emprunt de la Renaissance au latin praedator, « voleur, pilleur », lui-même issu de praeda, « proie » et de prehendō, « prendre », qui exprime le fait de se saisir de quelqu'un ou de capturer une proie déterminée par sa poursuite. La prédation est une interaction trophique directe, de nature antagoniste, entre deux organismes, par laquelle une espèce dénommée prédateur, consomme entièrement ou partiellement une ou plusieurs espèces dénommées proies, généralement en les tuant, pour s'en nourrir ou pour alimenter sa progéniture.
Système complexevignette|Visualisation sous forme de graphe d'un réseau social illustrant un système complexe. Un système complexe est un ensemble constitué d'un grand nombre d'entités en interaction dont l'intégration permet d'achever un but commun. Les systèmes complexes sont caractérisés par des propriétés émergentes qui n'existent qu'au niveau du système et ne peuvent pas être observées au niveau de ses constituants. Dans certains cas, un observateur ne peut pas prévoir les rétroactions ou les comportements ou évolutions des systèmes complexes par le calcul, ce qui amène à les étudier à l'aide de la théorie du chaos.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).
Nonlinear systemIn mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.
Système complexe adaptatifUn système complexe adaptatif ou système complexe auto-adaptatif est l'ensemble des cas particuliers d'un système complexe capable de s'adapter à son environnement par des expériences d'apprentissage. Le terme anglais complex adaptive systems (CAS) a été introduit par l'Institut interdisciplinaire de Santa Fe notamment par John H. Holland et Murray Gell-Mann. En 1962, Vero Copner Wynne-Edwards a observé la sélection de groupe à l’œuvre dans les communautés d’oiseaux sauvages.
Modèle d'IsingLe modèle d'Ising est un modèle de physique statistique qui a été adapté à divers phénomènes caractérisés par des interactions locales de particules à deux états. L'exemple principal est le ferromagnétisme pour lequel le modèle d'Ising est un modèle sur réseau de moments magnétiques, dans lequel les particules sont toujours orientées suivant le même axe spatial et ne peuvent prendre que deux valeurs. Ce modèle est parfois appelé modèle de Lenz-Ising en référence aux physiciens Wilhelm Lenz et Ernst Ising.
Two-dimensional conformal field theoryA two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations. In contrast to other types of conformal field theories, two-dimensional conformal field theories have infinite-dimensional symmetry algebras. In some cases, this allows them to be solved exactly, using the conformal bootstrap method. Notable two-dimensional conformal field theories include minimal models, Liouville theory, massless free bosonic theories, Wess–Zumino–Witten models, and certain sigma models.
Nombre complexeEn mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que i = −1. Le carré de (−i) est aussi égal à −1 : (−i) = −1. Tout nombre complexe peut s'écrire sous la forme x + i y où x et y sont des nombres réels. Les nombres complexes ont été progressivement introduit au par l’école mathématique italienne (Jérôme Cardan, Raphaël Bombelli, Tartaglia) afin d'exprimer les solutions des équations du troisième degré en toute généralité par les formules de Cardan, en utilisant notamment des « nombres » de carré négatif.