Ligand (chimie)Un ligand est un atome, un ion ou une molécule portant des groupes fonctionnels lui permettant de se lier à un ou plusieurs atomes ou ions centraux. Le terme de ligand est le plus souvent utilisé en chimie de coordination et en chimie organométallique (branches de la chimie inorganique). L'interaction métal/ligand est du type acide de Lewis/base de Lewis. La liaison ainsi formée est nommée « liaison covalente de coordination ».
Haut spin et bas spinEn chimie, l'état haut spin ou bas spin d'un métal de transition complexé avec des ligands décrit les différentes répartitions possibles des électrons issus des orbitales atomiques d du métal dans les orbitales moléculaires du complexe. Ces différentes configurations peuvent être représentées à l'aide des deux principaux modèles décrivant la structure électronique des complexes de coordination, la théorie du champ cristallin et la théorie du champ de ligands.
Complexe de coordinationvignette| Le cisplatine est un complexe de coordination du platine() avec deux ligands chlorure et deux ligands ammoniac formant une ammine. C'est l'un des anticancéreux les plus connus. Un complexe de coordination est constitué d'un atome ou d'ion central, généralement métallique, appelé centre de coordination, et d'un réseau de molécules ou d'ions liés, appelés ligands. De nombreux composés contenant des métaux, en particulier ceux qui comprennent des métaux de transition (éléments tels que le titane qui appartiennent au bloc du tableau périodique), sont des complexes de coordination.
Spectroscopie RMNvignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’.
Angular momentum couplingIn quantum mechanics, the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta is called angular momentum coupling. For instance, the orbit and spin of a single particle can interact through spin–orbit interaction, in which case the complete physical picture must include spin–orbit coupling. Or two charged particles, each with a well-defined angular momentum, may interact by Coulomb forces, in which case coupling of the two one-particle angular momenta to a total angular momentum is a useful step in the solution of the two-particle Schrödinger equation.
ParamagnétismeLe paramagnétisme désigne en magnétisme le comportement d'un milieu matériel qui ne possède pas d'aimantation spontanée mais qui, sous l'effet d'un champ magnétique extérieur, acquiert une aimantation orientée dans le même sens que le champ magnétique appliqué. Un matériau paramagnétique possède une susceptibilité magnétique de valeur positive (contrairement aux matériaux diamagnétiques). Cette grandeur sans unité est en général assez faible (dans une gamme allant de à ).
Ligand pontantUn ligand pontant est un ligand qui se connecte à deux atomes ou plus, généralement des ions métalliques, ce ligand pouvant être atomique ou polyatomique. Virtuellement, tous les complexes organiques sont des ligands pontants, ce terme est donc réservé à des petits ligands tels que les pseudohalogénures ou des ligands spécifiquement conçus pour se lier à deux atomes métalliques. En nomenclature des complexes, lorsqu'un seul atome se ponte à deux atomes métalliques, on précède le nom du ligand de la lettre grecque μ (mu), avec un numéro en exposant décrivant le nombre d'atomes métalliques pontés au ligand.
Variété abélienneEn mathématiques, et en particulier, en géométrie algébrique et géométrie complexe, une variété abélienne A est une variété algébrique projective qui est un groupe algébrique. La condition de est l'équivalent de la compacité pour les variétés différentielles ou analytiques, et donne une certaine rigidité à la structure. C'est un objet central en géométrie arithmétique. Une variété abélienne sur un corps k est un groupe algébrique A sur k, dont la variété algébrique sous-jacente est projective, connexe et géométriquement réduite.
Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
Théorie des perturbationsLa théorie des perturbations est un domaine des mathématiques, qui consiste à étudier les contextes où il est possible de trouver une solution approchée à une équation en partant de la solution d'un problème plus simple. Plus précisément, on cherche une solution approchée à une équation (E) (dépendante d'un paramètre λ), sachant que la solution de l'équation (E) (correspondant à la valeur λ=0) est connue exactement. L'équation mathématique (E) peut être par exemple une équation algébrique ou une équation différentielle.