Angular displacementThe angular displacement (symbol θ, , or φ), also called angle of rotation or rotational displacement, of a physical body is the angle (in units of radians, degrees, turns, etc.) through which the body rotates (revolves or spins) around a centre or axis of rotation. Angular displacement may be signed, indicating the sense of rotation (e.g., clockwise); it may also be greater (in absolute value) than a full turn. When a body rotates about its axis, the motion cannot simply be analyzed as a particle, as in circular motion it undergoes a changing velocity and acceleration at any time.
Vitesse angulaireEn mécanique, la ou est une grandeur physique qui représente le taux de variation d'un angle par rapport au temps. C'est l'analogue de la vitesse de translation pour un mouvement de rotation. La vitesse angulaire est définie comme la dérivée par rapport au temps de la position angulaire de l'objet en rotation : Si on dérive une nouvelle fois la vitesse angulaire, on obtient l'accélération angulaire.
Moment cinétiqueEn mécanique classique, le moment cinétique (ou moment angulaire par anglicisme) d'un point matériel M par rapport à un point O est le moment de la quantité de mouvement par rapport au point O, c'est-à-dire le produit vectoriel : Le moment cinétique d'un système matériel est la somme des moments cinétiques (par rapport au même point O) des points matériels constituant le système : Cette grandeur, considérée dans un référentiel galiléen, dépend du choix de l'origine O, par suite, il n'est pas possible de com
Rotation (physique)En cinématique, l'étude des corps en rotation est une branche fondamentale de la physique du solide et particulièrement de la dynamique, y compris de la dynamique des fluides, qui complète celle du mouvement de translation. L'analyse du mouvement de rotation se prolonge y compris aux échelles atomiques, avec la dynamique moléculaire et l'étude de la fonction d'onde en mécanique quantique.
Axis–angle representationIn mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction (geometry) of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained.
Accélération angulaireEn physique, l'accélération angulaire est la variation de la vitesse angulaire au cours du temps. En unités dérivées du Système international, l'accélération angulaire s'exprime en radians par seconde carrée (). L'accélération angulaire est une grandeur physique fondamentale pour caractériser le mouvement de rotation. L'accélération est la première dérivée par rapport au temps (dérivée temporelle) de la vitesse angulaire, et la seconde dérivée temporelle de la position angulaire.
Mouvement de rotationLa rotation ou mouvement de rotation est l'un des deux mouvements simples fondamentaux des solides, avec le mouvement rectiligne. En génie mécanique, il correspond au mouvement d'une pièce en liaison pivot par rapport à une autre. La notion de mouvement circulaire est une notion de cinématique du point : on décrit la position d'un point dans le plan. La rotation est une notion de cinématique du solide : on décrit l'orientation d'un solide dans l'espace. L'étude du mouvement de rotation est la base de la méthode du centre instantané de rotation (CIR).
Quaternions et rotation dans l'espaceLes quaternions unitaires fournissent une notation mathématique commode pour représenter l'orientation et la rotation d'objets en trois dimensions. Comparés aux angles d'Euler, ils sont plus simples à composer et évitent le problème du blocage de cardan. Comparés aux matrices de rotations, ils sont plus stables numériquement et peuvent se révéler plus efficaces. Les quaternions ont été adoptés dans des applications en infographie, robotique, navigation, dynamique moléculaire et en mécanique spatiale des satellites.
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
AngleEn géométrie, la notion générale d'angle se décline en plusieurs concepts. Dans son sens ancien, l'angle est une figure plane, portion de plan délimitée par deux demi-droites. C'est ainsi qu'on parle des angles d'un polygone. Cependant, l'usage est maintenant d'employer le terme « secteur angulaire » pour une telle figure. L'angle peut désigner également une portion de l'espace délimitée par deux plans (angle dièdre). La mesure de tels angles porte couramment mais abusivement le nom d'angle, elle aussi.