En géométrie, la notion générale d'angle se décline en plusieurs concepts.
Dans son sens ancien, l'angle est une figure plane, portion de plan délimitée par deux demi-droites. C'est ainsi qu'on parle des angles d'un polygone. Cependant, l'usage est maintenant d'employer le terme « secteur angulaire » pour une telle figure. L'angle peut désigner également une portion de l'espace délimitée par deux plans (angle dièdre). La mesure de tels angles porte couramment mais abusivement le nom d'angle, elle aussi.
En un sens plus abstrait, l'angle est une classe d'équivalence, c'est-à-dire un ensemble obtenu en assimilant entre eux tous les angles-figures identifiables par isométrie. L'une quelconque des figures identifiées est alors appelée représentant de l'angle. Tous ces représentants ayant même mesure, on peut parler de mesure de l'angle abstrait.
Il est possible de définir une notion d'angle orienté en géométrie euclidienne du plan, ainsi que d'étendre la notion d'angle au cadre des espaces vectoriels préhilbertiens ou des variétés riemanniennes.
Il y a plusieurs sortes d'angles : Angle droit, Angle aigu et Angle obtus.
La notion d'angle entre deux demi-droites s'étend à celle d'angle entre deux droites, ainsi qu'à celle d'angle entre deux courbes: c'est l'angle que forment les tangentes à ces courbes en leur point commun.
Le mot angle dérive du latin angulus, mot qui signifie « le coin ». Selon le mathématicien Carpos d'Antioche, l'angle est une quantité et l'intervalle des lignes ou des surfaces qui le comprennent ; cet intervalle est dimensionné d'une seule manière, et pourtant l'angle n'est pas une ligne pour cela.
vignette|gauche|Angle saillant α et angle rentrant β déterminés par deux demi-droites.
Dans le plan, deux demi-droites de même origine délimitent deux régions, appelées secteurs angulaires.
On dit que deux secteurs angulaires définissent le même angle lorsqu'ils sont superposables (plus formellement : l'angle d'un secteur angulaire est sa classe de congruence).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
thumb|upright|Raisonnement mathématique sur un tableau. Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets divers tels que les ensembles mathématiques, les nombres, les formes, les structures, les transformations ; ainsi qu'aux relations et opérations mathématiques qui existent entre ces objets. Elles sont aussi le domaine de recherche développant ces connaissances, ainsi que la discipline qui les enseigne.
La géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Most lacustrine deltas are nowadays highly anthropized systems. River training works during past centuries considered rivers mainly as vectors of water and sediments from a point source to a sink. However, numerous problems have been identified by resident ...
2024
,
We present 3DHumanGAN, a 3D-aware generative adversarial network that synthesizes photo-like images of fullbody humans with consistent appearances under different view-angles and body-poses. To tackle the representational and computational challenges in sy ...
Ieee Computer Soc2023
, , , , ,
Accurate real-time estimation of the gait phase (GP) is crucial for many control methods in exoskeletons and prostheses. A class of approaches to GP estimation construct the phase portrait of a segment or joint angle, and use the normalized polar angle of ...