Mathématiques indiennesLa chronologie des mathématiques indiennes s'étend de la civilisation de la vallée de l'Indus (-3300 à -1500) jusqu'à l'Inde moderne. Parmi les contributions des mathématiciens indiens au développement de la discipline, la plus féconde est certainement la numération décimale de position, appuyée sur des chiffres indiens, empruntés par les Arabes et qui se sont imposés dans le monde entier. Les Indiens ont maîtrisé le zéro, les nombres négatifs, les fonctions trigonométriques.
Racine cubiquevignette|Courbe représentative de la fonction racine cubique sur R. En mathématiques, la racine cubique d'un nombre réel est l'unique nombre réel dont le cube (c'est-à-dire la puissance ) vaut ; en d'autres termes, . La racine cubique de est notée . On peut également parler des racines cubiques d'un nombre complexe. De façon générale, on appelle racine cubique d'un nombre (réel ou complexe) tout nombre solution de l'équation : Si est réel, cette équation a dans R une unique solution, qu'on appelle la racine cubique du réel : .
Racine carréeEn mathématiques élémentaires, la racine carrée d'un nombre réel positif x est l'unique réel positif qui, lorsqu'il est multiplié par lui-même, donne x, c'est-à-dire le nombre positif dont le carré vaut x. On le note ou x. Dans cette expression, x est appelé le radicande et le signe est appelé le radical. La fonction qui, à tout réel positif, associe sa racine carrée s'appelle la fonction racine carrée. En algèbre et analyse, dans un anneau ou un corps A, on appelle racine carrée de a, tout élément de A dont le carré vaut a.
Abrégé du calcul par la restauration et la comparaisonL'Abrégé du calcul par la restauration et la comparaison (en arabe : 'الكتاب المختصر في حساب الجبر والمقابلة, Kitāb al-mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala) est un livre historique de mathématiques écrit en arabe entre 813 et 833 par le mathématicien perse Al-Khawarizmi. Dans cet ouvrage, Al-Khawarizmi pose les fondations de l'algèbre en étant le premier à étudier systématiquement la résolution des équations du premier et du second degré. Les successeurs d'Al-Khwarizmi ont perpétué et amplifié son œuvre dans d'autres ouvrages qui portaient souvent le même titre.
Traductionvignette|La Pierre de Rosette, qui a permis le déchiffrement des hiéroglyphes au . La traduction (dans son acception principale de traduction interlinguale) est le fait de faire passer un texte rédigé dans une langue (« langue source », ou « langue de départ ») dans une autre langue (« langue cible », ou « langue d'arrivée »). Elle met en relation au moins deux langues et deux cultures, et parfois deux époques.
Algèbre tensorielleEn mathématiques, une algèbre tensorielle est une algèbre sur un corps dont les éléments (appelés tenseurs) sont représentés par des combinaisons linéaires de « mots » formés avec des vecteurs d'un espace vectoriel donné. Les seules relations de dépendance linéaire entre ces mots sont induites par les combinaisons linéaires entre les vecteurs. Si l'espace vectoriel sous-jacent est muni d'une base, son algèbre tensorielle s'identifie avec l'algèbre associative unitaire libre engendrée par cette base.
Courbe algébriqueEn mathématiques, et plus précisément en géométrie algébrique, une courbe algébrique est une variété algébrique (ou un schéma de type fini) sur un corps, dont les composantes irréductibles sont de dimension 1. Cette définition est la généralisation moderne de celle des courbes algébriques classiques, telles que les coniques, définies, dans le cas des courbes planes, comme l'ensemble des points solutions d'une équation polynomiale. Sous sa forme la plus générale, une courbe algébrique sur un corps est une variété algébrique de dimension 1 sur , séparée pour éviter des pathologies.
Mathématiques chinoisesLes mathématiques chinoises sont apparues vers le Les Chinois développèrent de manière autonome des notations pour les grands nombres et les nombres négatifs, les décimaux et une notation positionnelle pour les représenter, le système binaire, l'algèbre, la géométrie et la trigonométrie ; leurs résultats précèdent souvent de plusieurs siècles les résultats analogues des mathématiciens occidentaux. Les mathématiciens chinois n'utilisèrent pas une approche axiomatique, mais plutôt une méthode algorithmique et des techniques algébriques, culminant au avec la création par Zhu Shijie de la méthode des quatre inconnues.
Histoire des mathématiquesL’histoire des mathématiques s'étend sur plusieurs millénaires et dans de nombreuses régions du globe allant de la Chine à l’Amérique centrale. Jusqu'au , le développement des connaissances mathématiques s’effectue essentiellement de façon cloisonnée dans divers endroits du globe. À partir du et surtout au , le foisonnement des travaux de recherche et la mondialisation des connaissances mènent plutôt à un découpage de cette histoire en fonction des domaines mathématiques.
Traduction automatiqueLa traduction automatique désigne la traduction brute d'un texte entièrement réalisée par un ou plusieurs programmes informatiques. Dans le cas de la traduction d'une conversation audio, en direct ou en différé, on parle de transcription automatique. Un traducteur humain n’intervient pas pour corriger les erreurs du texte durant la traduction, mais seulement avant et/ou après. On la distingue de la traduction assistée par ordinateur où la traduction est en partie manuelle, éventuellement de façon interactive avec la machine.