Cauchy boundary conditionIn mathematics, a Cauchy (koʃi) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.
Condition aux limites mêléeEn mathématiques, une condition aux limites mêlée ou mixte correspond à la juxtaposition de différentes conditions aux limites sur différentes parties du bord (ou frontière) du domaine dans lequel est posée une équation aux dérivées partielles ou une équation différentielle ordinaire. Par exemple, si l'on considère les vibrations d'une corde élastique de longueur L se déplaçant à une vitesse c dont une extrémité (en 0) est fixe, et l'autre (en L) est attachée à un anneau oscillant librement le long d'une tige droite, on a alors une équation sur un intervalle [0,L].
Convection thermiqueLa convection (thermique) désigne le transfert d'énergie thermique au sein d'un fluide en mouvement ou entre un fluide en mouvement et une paroi solide. Ce transfert d'énergie est réalisé par deux modes de transfert élémentaire combinés que sont l'advection et la diffusion. La convection constitue, avec la conduction et le rayonnement, l'un des trois modes d'échange de chaleur entre deux systèmes, et diffère de ces derniers par la méthode de transfert.
Équation différentielle homogèneL'expression équation différentielle homogène a deux significations totalement distinctes et indépendantes. Une équation différentielle du premier ordre mais non nécessairement linéaire est dite homogène de degré n si elle peut s'écrire sous la forme où F est une fonction homogène de degré n, c'est-à-dire vérifiant Autrement dit (en posant h(u)=F(1,u)), c'est une équation qui s'écrit Le cas le plus étudié est celui où le degré d'homogénéité est 0, à tel point que dans ce cas on ne mentionne même pas le degré.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Équation différentielle à retardEn mathématiques, les équations différentielles à retard (EDR) sont un type d'équation différentielle dans laquelle la dérivée de la fonction inconnue à un certain instant est donnée en fonction des valeurs de la fonction aux instants précédents. Les EDR sont également appelés des systèmes à retard, systèmes avec effet secondaire ou temps mort, systèmes héréditaires, équations à argument déviant, ou équations aux différences différentielles .
Équation différentielle stochastiqueUne équation différentielle stochastique (EDS) est une généralisation de la notion d'équation différentielle prenant en compte un terme de bruit blanc. Les EDS permettent de modéliser des trajectoires aléatoires, tels des cours de bourse ou les mouvements de particules soumises à des phénomènes de diffusion. Elles permettent aussi de traiter théoriquement ou numériquement des problèmes issus de la théorie des équations aux dérivées partielles.
CaloducCaloduc, du latin calor « chaleur » et de ductus « conduite », désigne des éléments conducteurs de chaleur. Appelé heat pipe en anglais (signifiant littéralement « tuyau de chaleur »), un caloduc est destiné à transporter la chaleur grâce au principe du transfert thermique par transition de phase d'un fluide (chaleur latente). Un caloduc se présente sous la forme d’une enceinte hermétique renfermant un fluide à l'état d'équilibre liquide-vapeur, généralement en absence de tout autre gaz.
Pompe à chaleurUne pompe à chaleur (PAC), aussi appelée thermopompe en français canadien, est un dispositif permettant de transférer de l'énergie thermique (anciennement « calories ») d'un milieu à basse température (source froide) vers un milieu à haute température (source chaude). Ce dispositif permet donc d'inverser le sens naturel du transfert spontané de l'énergie thermique. Selon le sens de fonctionnement du dispositif de pompage, une pompe à chaleur peut être considérée comme un système de chauffage, si l'on souhaite augmenter la température de la source chaude, ou de réfrigération, si l'on souhaite abaisser la température de la source froide.