Automorphisme intérieurUn automorphisme intérieur est une notion mathématique utilisée en théorie des groupes. Soient G un groupe et g un élément de G. On appelle automorphisme intérieur associé à g, noté ιg, l'automorphisme de G défini par : Pour un groupe abélien, les automorphismes intérieurs sont triviaux. Plus généralement, l'ensemble des automorphismes intérieurs de G forme un sous-groupe normal du groupe des automorphismes de G, et ce sous-groupe est isomorphe au groupe quotient de G par son centre.
Outer automorphism groupIn mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of Inn(G) with respect to outer automorphisms are then the elements of Out(G); this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups.
Automorphisms of the symmetric and alternating groupsIn group theory, a branch of mathematics, the automorphisms and outer automorphisms of the symmetric groups and alternating groups are both standard examples of these automorphisms, and objects of study in their own right, particularly the exceptional outer automorphism of S6, the symmetric group on 6 elements. , and thus . Formally, is complete and the natural map is an isomorphism. , and the outer automorphism is conjugation by an odd permutation. Indeed, the natural maps are isomorphisms.
Théorie des représentations d'un groupe finivignette|Ferdinand Georg Frobenius, fondateur de la théorie de la représentation des groupes. En mathématiques et plus précisément en théorie des groupes, la théorie des représentations d'un groupe fini traite des représentations d'un groupe G dans le cas particulier où G est un groupe fini. Cet article traite de l'aspect mathématique et, de même que l'article de synthèse « Représentations d'un groupe fini », n'aborde que les représentations linéaires de G (par opposition aux représentations projectives ou ).
Covering groupIn mathematics, a covering group of a topological group H is a covering space G of H such that G is a topological group and the covering map p : G → H is a continuous group homomorphism. The map p is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which H has index 2 in G; examples include the spin groups, pin groups, and metaplectic groups.
Groupe de MathieuEn mathématiques, les groupes de Mathieu sont cinq groupes simples finis découverts par le mathématicien français Émile Mathieu. Ils sont habituellement perçus comme des groupes de permutations sur n points (où n peut prendre les valeurs 11, 12, 22, 23 ou 24) et sont nommés M. Les groupes de Mathieu ont été les premiers groupes sporadiques découverts. Les groupes M et M sont 5-transitifs, les groupes M et M sont 4-transitifs et M est 3-transitif. Cette transitivité est même stricte pour M et M.
Groupe de ThompsonIn the area of modern algebra known as group theory, the Thompson group Th is a sporadic simple group of order 2153105372131931 = 90745943887872000 ≈ 9. Th is one of the 26 sporadic groups and was found by and constructed by . They constructed it as the automorphism group of a certain lattice in the 248-dimensional Lie algebra of E8. It does not preserve the Lie bracket of this lattice, but does preserve the Lie bracket mod 3, so is a subgroup of the Chevalley group E8(3).
Groupe MonstreEn mathématiques, le Monstre M ou groupe de Fischer-Griess F est le plus gros des 26 groupes simples sporadiques. Son ordre est 2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 47 × 59 × 71 = ≈ . C'est un groupe simple, ceci signifiant qu'il n'a aucun sous-groupe normal excepté pour le sous-groupe constitué seulement de l'élément identité, et lui-même. Les groupes simples finis ont été complètement classés ; il existe 18 familles infinies dénombrables de groupes simples finis, plus 26 groupes sporadiques qui ne suivent aucun motif apparent.
Groupe quasi-simpleEn mathématiques, un groupe parfait G est un groupe quasi-simple si le groupe de ses automorphismes intérieurs est simple. En d'autres termes, s'il existe une suite exacte courte : où S est un groupe simple. Les groupes simples non abéliens sont quasi-simples. Les recouvrements du groupe alterné sont quasi-simples mais non simples, pour . Les sous-groupes normaux propres d'un groupe quasi-simple sont contenus dans son centre. Tout endomorphisme non trivial d'un groupe fini quasi-simple est un automorphisme.
Covering groups of the alternating and symmetric groupsIn the mathematical area of group theory, the covering groups of the alternating and symmetric groups are groups that are used to understand the projective representations of the alternating and symmetric groups. The covering groups were classified in : for n ≥ 4, the covering groups are 2-fold covers except for the alternating groups of degree 6 and 7 where the covers are 6-fold. For example the binary icosahedral group covers the icosahedral group, an alternating group of degree 5, and the binary tetrahedral group covers the tetrahedral group, an alternating group of degree 4.