Satisfiability modulo theoriesEn informatique et en logique mathématique, un problème de satisfiabilité modulo des théories (SMT) est un problème de décision pour des formules de logique du premier ordre avec égalité (sans quantificateurs), combinées à des théories dans lesquelles sont exprimées certains symboles de prédicat et/ou certaines fonctions. Des exemples de théories incluent la théorie des nombres réels, la théorie de l’arithmétique linéaire, des théories de diverses structures de données comme les listes, les tableaux ou les tableaux de bits, ainsi que des combinaisons de celles-ci.
Liste de concepts logiquesCet article liste les principaux concepts logiques, au sens philosophique du terme, c'est-à-dire en logique générale (issue de la dialectique). Nota : La logique comporte aussi des branches en mathématiques et en informatique. Ces branches de la logique utilisent des concepts souvent différents comme les prédicats : axiome, théorème hypothèse, conjonction, disjonction, Déduction naturelle... Pour plus d'informations sur ces concepts consulter les articles : Logique mathématique, logique classique.
Philosophie de la logiqueLa philosophie de la logique est une partie de la philosophie des sciences qui s'intéresse à l’ensemble des problèmes théoriques qui relèvent traditionnellement de la logique, comportant essentiellement la question de son essence, son histoire depuis son origine aristotélicienne et à l'intérieur de la question philosophique, de l'extension de son domaine et de ses limites, aux côtés de la philosophie du langage, de la philosophie des sciences, du psychologisme et des mathématiques.
Endomorphisme autoadjointEn mathématiques et plus précisément en algèbre linéaire, un endomorphisme autoadjoint ou opérateur hermitien est un endomorphisme d'espace de Hilbert qui est son propre adjoint (sur un espace de Hilbert réel on dit aussi endomorphisme symétrique). Le prototype d'espace de Hilbert est un espace euclidien, c'est-à-dire un espace vectoriel sur le corps des réels, de dimension finie, et muni d'un produit scalaire. L'analogue sur le corps des complexes s'appelle un espace hermitien.
SatisfaisabilitéEn logique mathématique, la satisfaisabilité ou satisfiabilité et la validité sont des concepts élémentaires de sémantique. Une formule est satisfaisable s'il est possible de trouver une interprétation (modèle), une façon d'interpréter tous les éléments constitutifs de la formule, qui rend la formule vraie. Une formule est universellement valide, ou en raccourci valide si, pour toutes les interprétations, la formule est vraie.
Horn-satisfiabilitéUne formule de Horn est une conjonction de clauses contenant chacune au plus un littéral positif, c'est-à-dire une conjonction de clauses de Horn. Puisque le problème SAT est NP-complet, donc vérifiable en temps polynomial et plus difficile que tout problème dans NP, il est naturel de rechercher des problèmes proches mais plus "faciles" à résoudre. C'est notamment le cas de la satisfaisabilité d'une formule de Horn, puisqu'il s'agit d'un problème P-complet, plus difficile que tout problème dans P.
Induction (logique)L'induction est historiquement le nom utilisé pour signifier un genre de raisonnement qui se propose de chercher des lois générales à partir de l'observation de faits particuliers, sur une base probabiliste. Remarque : Bien qu'associée dans le titre de cet article à la logique, la présentation qui suit correspond surtout à la notion bayésienne, utilisée consciemment ou non, de l'induction.
Formule logiqueEn logique on dit d’une suite finie de lettres qu’elle est une formule, ou parfois formule bien formée, d'un langage logique donné lorsqu’elle peut être construite en appliquant une combinaison des règles de la grammaire formelle associée, on parle de la syntaxe du langage. Informellement les formules sont les assemblages de lettres auxquels il est possible de donner une signification en termes de valeur de vérité (Vrai, ou Faux). Les formules logiques sont l'équivalent des phrases du langage naturel.
DécidabilitéEn logique mathématique, le terme décidabilité recouvre deux concepts liés : la décidabilité logique et la décidabilité algorithmique. L’indécidabilité est la négation de la décidabilité. Dans les deux cas, il s'agit de formaliser l'idée qu'on ne peut pas toujours conclure lorsque l'on se pose une question, même si celle-ci est sous forme logique. Une proposition (on dit aussi énoncé) est dite décidable dans une théorie axiomatique si on peut la démontrer ou démontrer sa négation dans le cadre de cette théorie.
Ensemble flouLa théorie des sous-ensembles flous est une théorie mathématique du domaine de l’algèbre abstraite. Elle a été développée par Lotfi Zadeh en 1965 afin de représenter mathématiquement l'imprécision relative à certaines classes d'objets et sert de fondement à la logique floue. Les sous-ensembles flous (ou parties floues) ont été introduits afin de modéliser la représentation humaine des connaissances, et ainsi améliorer les performances des systèmes de décision qui utilisent cette modélisation.