Discrete choiceIn economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis.
Heterogeneity in economicsIn economic theory and econometrics, the term heterogeneity refers to differences across the units being studied. For example, a macroeconomic model in which consumers are assumed to differ from one another is said to have heterogeneous agents. In econometrics, statistical inferences may be erroneous if, in addition to the observed variables under study, there exist other relevant variables that are unobserved, but correlated with the observed variables; dependent and independent variables .
Modèle d'équations structurellesLa modélisation d'équations structurelles ou la modélisation par équations structurelles ou encore la modélisation par équations structurales (en anglais structural equation modeling ou SEM) désignent un ensemble diversifié de modèles mathématiques, algorithmes informatiques et méthodes statistiques qui font correspondre un réseau de concepts à des données. On parle alors de modèles par équations structurales, ou de modèles en équations structurales ou encore de modèles d’équations structurelles.
Segmentation (marketing)vignette|Celle ci parle du tranche d'âge des enfants qui pourront fréquenter les différentes market qui existent La segmentation d'un marché consiste à le découper analytiquement en sous-marchés homogènes. Cette analyse se pratique en particulier mais pas uniquement dans le domaine du marketing. La segmentation dite « de ciblage », ou de détermination des couples produit-marché, vise à qualifier et à quantifier la relation qui peut exister entre le produit et son marché.
LogitLa fonction logit est une fonction mathématique utilisée principalement en statistiques et pour la régression logistique, en intelligence artificielle (réseaux neuronaux), en inférence bayésienne pour transformer les probabilités sur [0,1] en évidence sur R afin d'une part d'éviter des renormalisations permanentes, et d'autre part de rendre additive la formule de Bayes pour faciliter les calculs. Son expression est où p est défini sur ]0, 1[ La base du logarithme utilisé est sans importance, tant que celle-ci est supérieure à 1.
Modèle linéaire généraliséEn statistiques, le modèle linéaire généralisé (MLG) souvent connu sous les initiales anglaises GLM est une généralisation souple de la régression linéaire. Le GLM généralise la régression linéaire en permettant au modèle linéaire d'être relié à la variable réponse via une fonction lien et en autorisant l'amplitude de la variance de chaque mesure d'être une fonction de sa valeur prévue, en fonction de la loi choisie.
Cible (marketing)A target market, also known as serviceable obtainable market (SOM), is a group of customers within a business's serviceable available market at which a business aims its marketing efforts and resources. A target market is a subset of the total market for a product or service. The target market typically consists of consumers who exhibit similar characteristics (such as age, location, income or lifestyle) and are considered most likely to buy a business's market offerings or are likely to be the most profitable segments for the business to service by OCHOM Once the target market(s) have been identified, the business will normally tailor the marketing mix (4 Ps) with the needs and expectations of the target in mind.
Régression logistiqueEn statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Market analysisA market analysis studies the attractiveness and the dynamics of a special market within a special industry. It is part of the industry analysis and thus in turn of the global environmental analysis. Through all of these analyses the strengths, weaknesses, opportunities and threats (SWOT) of a company can be identified. Finally, with the help of a SWOT analysis, adequate business strategies of a company will be defined.