Discrete choiceIn economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis.
Heterogeneity in economicsIn economic theory and econometrics, the term heterogeneity refers to differences across the units being studied. For example, a macroeconomic model in which consumers are assumed to differ from one another is said to have heterogeneous agents. In econometrics, statistical inferences may be erroneous if, in addition to the observed variables under study, there exist other relevant variables that are unobserved, but correlated with the observed variables; dependent and independent variables .
Structural equation modelingStructural equation modeling (SEM) is a diverse set of methods used by scientists doing both observational and experimental research. SEM is used mostly in the social and behavioral sciences but it is also used in epidemiology, business, and other fields. A definition of SEM is difficult without reference to technical language, but a good starting place is the name itself. SEM involves a model representing how various aspects of some phenomenon are thought to causally connect to one another.
Market segmentationIn marketing, market segmentation is the process of dividing a broad consumer or business market, normally consisting of existing and potential customers, into sub-groups of consumers (known as segments) based on shared characteristics. In dividing or segmenting markets, researchers typically look for common characteristics such as shared needs, common interests, similar lifestyles, or even similar s.
LogitIn statistics, the logit (ˈloʊdʒɪt ) function is the quantile function associated with the standard logistic distribution. It has many uses in data analysis and machine learning, especially in data transformations. Mathematically, the logit is the inverse of the standard logistic function , so the logit is defined as Because of this, the logit is also called the log-odds since it is equal to the logarithm of the odds where p is a probability. Thus, the logit is a type of function that maps probability values from to real numbers in , akin to the probit function.
Generalized linear modelIn statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value. Generalized linear models were formulated by John Nelder and Robert Wedderburn as a way of unifying various other statistical models, including linear regression, logistic regression and Poisson regression.
Target marketA target market, also known as serviceable obtainable market (SOM), is a group of customers within a business's serviceable available market at which a business aims its marketing efforts and resources. A target market is a subset of the total market for a product or service. The target market typically consists of consumers who exhibit similar characteristics (such as age, location, income or lifestyle) and are considered most likely to buy a business's market offerings or are likely to be the most profitable segments for the business to service by OCHOM Once the target market(s) have been identified, the business will normally tailor the marketing mix (4 Ps) with the needs and expectations of the target in mind.
Logistic regressionIn statistics, the logistic model (or logit model) is a statistical model that models the probability of an event taking place by having the log-odds for the event be a linear combination of one or more independent variables. In regression analysis, logistic regression (or logit regression) is estimating the parameters of a logistic model (the coefficients in the linear combination).
Statistical modelA statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process. When referring specifically to probabilities, the corresponding term is probabilistic model. A statistical model is usually specified as a mathematical relationship between one or more random variables and other non-random variables.
Market analysisA market analysis studies the attractiveness and the dynamics of a special market within a special industry. It is part of the industry analysis and thus in turn of the global environmental analysis. Through all of these analyses the strengths, weaknesses, opportunities and threats (SWOT) of a company can be identified. Finally, with the help of a SWOT analysis, adequate business strategies of a company will be defined.