Masse effectiveredresse=1.5|vignette|Structure de bande générée pour Si, Ge, GaAs et InAs massifs par la méthode . La masse effective est une notion utilisée en physique du solide pour l'étude du transport des électrons. Plutôt que de décrire des électrons de masse fixée évoluant dans un potentiel donné, on les décrit comme des électrons libres dont la masse effective varie. Cette masse effective peut-être positive ou négative, supérieure ou inférieure à la masse réelle de l'électron.
Spectroscopie infrarougethumb|Un spectromètre infrarouge. La spectroscopie infrarouge (parfois désignée comme spectroscopie IR) est une classe de spectroscopie qui traite de la région infrarouge du spectre électromagnétique. Elle recouvre une large gamme de techniques, la plus commune étant un type de spectroscopie d'absorption. Comme pour toutes les techniques de spectroscopie, elle peut être employée pour l'identification de composés ou pour déterminer la composition d'un échantillon.
Fonction thêtaEn mathématiques, on appelle fonctions thêta certaines fonctions spéciales d'une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l'étude des variétés abéliennes, des espaces de modules, et les formes quadratiques. Elles ont aussi des applications à la théorie des solitons. Leurs généralisations en algèbre extérieure apparaissent dans la théorie quantique des champs, plus précisément dans la théorie des cordes et des D-branes.
Puits quantiqueUn puits quantique est une zone de l'espace dans laquelle le potentiel ressenti par une particule quantique atteint un minimum. Il s'agit d'un puits de potentiel dont les petites dimensions entraînent une différence entre les prédictions de la mécanique classique et celles de la mécanique quantique. L'équation de Schrödinger prévoit en effet que l'énergie de la particule évoluant dans un tel puits est quantifiée. L'étude de puits quantiques de forme variée (puits carré, puits harmonique, couplage entre deux puits voisins.
Fonction lemniscatiqueEn mathématiques, les fonctions lemniscatiques sont des fonctions elliptiques liées à la longueur d'arc d'une lemniscate de Bernoulli ; ces fonctions ont beaucoup d'analogies avec les fonctions trigonométriques. Elles ont été étudiées par Giulio Fagnano en 1718 ; leur analyse approfondie, et en particulier la détermination de leurs périodes, a été obtenue par Carl Friedrich Gauss en 1796. Ces fonctions ont un réseau de périodes carré, et sont étroitement reliées à la fonction elliptique de Weierstrass dont les invariants sont g2 = 1 et g3 = 0.
Fonction circulaire réciproqueLes fonctions circulaires réciproques, ou fonctions trigonométriques inverses, sont les fonctions réciproques des fonctions circulaires, pour des intervalles de définition précis. Les fonctions réciproques des fonctions sinus, cosinus, tangente, cotangente, sécante et cosécante sont appelées arc sinus, arc cosinus, arc tangente, arc cotangente, arc sécante et arc cosécante. Les fonctions circulaires réciproques servent à obtenir un angle à partir de l'une quelconque de ses lignes trigonométriques, mais aussi à expliciter les primitives de certaines fonctions.
Parité d'une fonctionEn mathématiques, la parité d'une fonction d'une variable réelle, complexe ou vectorielle est une propriété qui requiert d'abord la symétrie du domaine de définition par rapport à l'origine, puis s'exprime par l'une ou l'autre des relations suivantes : fonction paire : pour tout x du domaine de définition, f (−x) = f (x) ; fonction impaire : pour tout x du domaine de définition, f (−x) = −f (x).
Fonction hyperboliqueEn mathématiques, on appelle fonctions hyperboliques les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique. Les noms « sinus », « cosinus » et « tangente » proviennent de leur ressemblance avec les fonctions trigonométriques (dites « circulaires » car en relation avec le cercle unité x + y = 1) et le terme « hyperbolique » provient de leur relation avec l'hyperbole d'équation x – y = 1. Elles sont utilisées en analyse pour le calcul intégral, la résolution des équations différentielles mais aussi en géométrie hyperbolique.
Spectroscopie dans l'infrarouge procheLa spectroscopie dans l'infrarouge proche (ou dans le proche infrarouge, SPIR), souvent désignée par son sigle anglais NIRS (near-infrared spectroscopy), est une technique de mesure et d'analyse des spectres de réflexion dans la gamme de longueurs d'onde (l'infrarouge proche). Cette technique est largement utilisée dans les domaines de la chimie (polymères, pétrochimie, industrie pharmaceutique), de l’alimentation, de l’agriculture ainsi qu'en planétologie. À ces longueurs d’onde, les liaisons chimiques qui peuvent être analysées sont C-H, O-H et N-H.
InfrarougeLe rayonnement infrarouge (IR) est un rayonnement électromagnétique de longueur d'onde supérieure à celle du spectre visible mais plus courte que celle des micro-ondes ou du domaine térahertz. Cette gamme de longueurs d'onde dans le vide de à se divise en infrarouge proche, au sens de proche du spectre visible, de environ, infrarouge moyen, qui s'étend jusqu'à , et infrarouge lointain. Les limites de ces domaines peuvent varier quelque peu d'un auteur à l'autre.