Réponse impulsionnellevignette|300px|right|Réponses impulsionnelles d'un système audio simple (de haut en bas) : impulsion originale à l'entrée, réponse après amplification des hautes fréquences et réponse après amplification des basses fréquences. En traitement du signal, la réponse impulsionnelle d'un processus est le signal de sortie qui est obtenu lorsque l'entrée reçoit une impulsion, c'est-à-dire une variation soudaine et brève du signal.
Réponse en fréquenceLa réponse en fréquence est la mesure de la réponse de tout système (mécanique, électrique, électronique, optique, etc.) à un signal de fréquence variable (mais d'amplitude constante) à son entrée. Dans la gamme des fréquences audibles, la réponse en fréquence intéresse habituellement les amplificateurs électroniques, les microphones et les haut-parleurs. La réponse du spectre radioélectrique peut faire référence aux mesures de câbles coaxiaux, aux câbles de catégorie 6 et aux dispositifs de mélangeur vidéo sans fil.
Calcul des variationsLe calcul des variations (ou calcul variationnel) est, en mathématiques et plus précisément en analyse fonctionnelle, un ensemble de méthodes permettant de minimiser une fonctionnelle. Celle-ci, qui est à valeurs réelles, dépend d'une fonction qui est l'inconnue du problème. Il s'agit donc d'un problème de minimisation dans un espace fonctionnel de dimension infinie. Le calcul des variations s'est développé depuis le milieu du jusqu'aujourd'hui ; son dernier avatar est la théorie de la commande optimale, datant de la fin des années 1950.
Onde planeL'onde plane est un concept issu de la physique de la propagation des ondes. C'est une onde dont les fronts d'onde sont des plans infinis, tous perpendiculaires à une même direction de propagation désignée par le vecteur . En prenant par exemple dans la direction z, alors cette onde ne dépend pas des coordonnées x et y : Ainsi, la grandeur mesurée dépend uniquement du temps et d'une seule variable d'espace en coordonnées cartésiennes mais elle ne dépend pas du point considéré dans un plan (P) quelconque orthogonal à la direction de propagation.
Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
Fonction de transfertEn traitement du signal, une fonction de transfert est un modèle mathématique de la relation entre l'entrée et la sortie d'un système linéaire, le plus souvent invariant. Elle est utilisée notamment en théorie des communications, en automatique, et dans toutes les sciences de l'ingénieur qui font appel à cette discipline (électronique, mécanique, mécatronique). Les signaux d'entrée et de sortie ci-dessus peuvent avoir plusieurs composantes, auquel cas on précise souvent (sans que ce soit une obligation) que la fonction de transfert est une matrice de transfert.
Sinusoidal plane waveIn physics, a sinusoidal plane wave is a special case of plane wave: a field whose value varies as a sinusoidal function of time and of the distance from some fixed plane. It is also called a monochromatic plane wave, with constant frequency (as in monochromatic radiation). For any position in space and any time , the value of such a field can be written as where is a unit-length vector, the direction of propagation of the wave, and "" denotes the dot product of two vectors.
Système linéaireUn système linéaire (le terme système étant pris au sens de l'automatique, à savoir un système dynamique) est un objet du monde matériel qui peut être décrit par des équations linéaires (équations linéaires différentielles ou aux différences), ou encore qui obéit au principe de superposition : toute combinaison linéaire des variables de ce système est encore une variable de ce système. Les systèmes non linéaires sont plus difficiles à étudier que les systèmes linéaires.
Réponse indicielleEn automatique la réponse indicielle est la réponse d'un système dynamique à une fonction marche de Heaviside communément appelée échelon. Si le système est un système linéaire invariant (SLI) à temps continu ou discret, alors la réponse indicielle est définie par les relations respectives suivantes : Lorsque le système est asymptotiquement stable, la réponse indicielle converge vers une valeur limite (asymptote horizontale) appelée valeur stationnaire ou finale.
Polarisation (optique)La polarisation est une propriété qu'ont les ondes vectorielles (ondes qui peuvent osciller selon plus d'une orientation) de présenter une répartition privilégiée de l'orientation des vibrations qui les composent. Les ondes électromagnétiques, telles que la lumière, ou les ondes gravitationnelles ont ainsi des propriétés de polarisation. Les ondes mécaniques transverses dans les solides peuvent aussi être polarisées. Cependant, les ondes longitudinales (telles que les ondes sonores) ne sont pas concernées.