Espace affineEn géométrie, la notion d'espace affine généralise la notion d'espace issue de la géométrie euclidienne en omettant les notions d'angle et de distance. Dans un espace affine, on peut parler d'alignement, de parallélisme, de barycentre. Sous la forme qui utilise des rapports de mesures algébriques, qui est une notion affine, le théorème de Thalès et le théorème de Ceva sont des exemples de théorèmes de géométrie affine plane réelle (c'est-à-dire n'utilisant que la structure d'espace affine du plan réel).
Théorie des codesEn théorie de l'information, la théorie des codes traite des codes et de leurs propriétés et de leurs aptitudes à servir sur différents canaux de communication. On distingue deux modèles de communication : avec et sans bruit. Sans bruit, le codage de source suffit à la communication. Avec bruit, la communication est possible avec les codes correcteurs. En définissant l'information de façon mathématique, l'étape fondatrice de la théorie des codes a été franchie par Claude Shannon.
Espace euclidienEn mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique classique, le plan ainsi que l'espace qui nous entoure. Un espace euclidien permet également de traiter les dimensions supérieures ; il est défini par la donnée d'un espace vectoriel sur le corps des réels, de dimension finie, muni d'un produit scalaire, qui permet de « mesurer » distances et angles.
Sous-espace de KrylovEn algèbre linéaire, le sous-espace de Krylov d'ordre r associé à une matrice de taille et un vecteur b de dimension n est le sous-espace vectoriel linéaire engendré par les vecteurs images de b par les r premières puissances de A (à partir de ), c'est-à-dire Le concept porte le nom du mathématicien appliqué et ingénieur naval russe Alexei Krylov, qui a publié un article à ce sujet en 1931. Les vecteurs sont linéairement indépendants tant que , et . Ainsi, désigne la dimension maximale d'un sous-espace de Krylov.
Complemented subspaceIn the branch of mathematics called functional analysis, a complemented subspace of a topological vector space is a vector subspace for which there exists some other vector subspace of called its (topological) complement in , such that is the direct sum in the category of topological vector spaces. Formally, topological direct sums strengthen the algebraic direct sum by requiring certain maps be continuous; the result retains many nice properties from the operation of direct sum in finite-dimensional vector spaces.
Somme directeEn mathématiques, et plus précisément en algèbre, le terme de somme directe désigne des ensembles munis de certaines structures, souvent construits à partir du produit cartésien d'autres ensembles du même type, et vérifiant la propriété universelle de la somme (ou « coproduit ») au sens des catégories. Produit direct (groupes)#Somme directe interne d'une famille de sous-groupes abéliensSomme directe interne de sous-groupes abéliens Soient F et F deux sous-espaces vectoriels d'un espace vectoriel E.
Transduction (génétique)En génétique, la transduction est un processus qui consiste en un transfert de matériel génétique (ADN bactérien), d'une bactérie donneuse à une bactérie receveuse, par l'intermédiaire d'un vecteur viral (un bactériophage). Un marqueur génétique est transduit quand il a été encapsidé puis intégré dans le génome par recombinaison. Il existe deux types de transduction : généralisée et spécialisée (ou « localisée », ou encore « restreinte »).
Cloning vectorA cloning vector is a small piece of DNA that can be stably maintained in an organism, and into which a foreign DNA fragment can be inserted for cloning purposes. The cloning vector may be DNA taken from a virus, the cell of a higher organism, or it may be the plasmid of a bacterium. The vector contains features that allow for the convenient insertion of a DNA fragment into the vector or its removal from the vector, for example through the presence of restriction sites.
Vector (molecular biology)In molecular cloning, a vector is any particle (e.g., plasmids, cosmids, Lambda phages) used as a vehicle to artificially carry a foreign nucleic sequence – usually DNA – into another cell, where it can be replicated and/or expressed. A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids. Common to all engineered vectors are an origin of replication, a multicloning site, and a selectable marker.
Réseau informatiquethumb|upright|Connecteurs RJ-45 servant à la connexion des réseaux informatiques via Ethernet. thumb|upright Un réseau informatique ( ou DCN) est un ensemble d'équipements reliés entre eux pour échanger des informations. Par analogie avec un (un réseau est un « petit rets », c'est-à-dire un petit filet), on appelle nœud l'extrémité d'une connexion, qui peut être une intersection de plusieurs connexions ou équipements (un ordinateur, un routeur, un concentrateur, un commutateur).