Publication

A Dual Modifier-Adaptation Approach for Real-Time Optimization

Concepts associés (31)
Optimisation (mathématiques)
L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Optimisation multiobjectif
L'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Optimisation combinatoire
L’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.
Algorithme de colonies de fourmis
Les algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Acquisition du langage
L'acquisition du langage est un domaine de recherche pluridisciplinaire, relevant notamment de la recherche en psychologie et en sciences du langage, qui vise à décrire et comprendre comment l'enfant acquiert le langage, oral ou gestuel, du milieu qui l'entoure. L'acquisition du langage d'un jeune enfant est rapide et s'effectue sans apprentissage formel. Le langage se développe toute la vie, mais c'est surtout entre la naissance et l'âge de cinq ans, que les apprentissages essentiels sont observés.
Recherche locale (optimisation)
En algorithmique, la recherche locale est une méthode générale utilisée pour résoudre des problèmes d'optimisation, c'est-à-dire des problèmes où l'on cherche la meilleure solution dans un ensemble de solutions candidates. La recherche locale consiste à passer d'une solution à une autre solution proche dans l'espace des solutions candidates (l'espace de recherche) jusqu'à ce qu'une solution considérée comme optimale soit trouvée, ou que le temps imparti soit dépassé.
Algorithme génétique
Les algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Global optimization
Global optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Syntaxe
La syntaxe est, à l'origine, la branche de la linguistique qui étudie la manière dont les mots se combinent pour former des phrases ou des énoncés dans une langue. On distingue la syntaxe, qui concerne les expressions [les mots], de la sémantique, qui concerne ce qui est visé par les expressions [le sens, la signification/les choses]. Le terme a un sens similaire en informatique, bien qu'il s'applique à une terminologie différente.
Constrained optimization
In mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The objective function is either a cost function or energy function, which is to be minimized, or a reward function or utility function, which is to be maximized.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.