Programmation orientée objetLa programmation orientée objet (POO), ou programmation par objet, est un paradigme de programmation informatique. Elle consiste en la définition et l'interaction de briques logicielles appelées objets ; un objet représente un concept, une idée ou toute entité du monde physique, comme une voiture, une personne ou encore une page d'un livre. Il possède une structure interne et un comportement, et il sait interagir avec ses pairs.
Detection theoryDetection theory or signal detection theory is a means to measure the ability to differentiate between information-bearing patterns (called stimulus in living organisms, signal in machines) and random patterns that distract from the information (called noise, consisting of background stimuli and random activity of the detection machine and of the nervous system of the operator). In the field of electronics, signal recovery is the separation of such patterns from a disguising background.
Instance (programmation)En programmation orientée objet, on appelle instance d'une classe, un objet avec un comportement et un état, tous deux définis par la classe. Il s'agit donc d'un objet constituant un exemplaire de la classe. Dans ce contexte, instance est un anglicisme, qui signifie « cas », « exemple ». L'instanciation est l'action d'instancier, de créer un objet à partir d'un modèle. Elle est réalisée par la composition de deux opérations : l'allocation et l'initialisation. L'allocation consiste à réserver un espace mémoire au nouvel objet.
Harris affine region detectorIn the fields of computer vision and , the Harris affine region detector belongs to the category of feature detection. Feature detection is a preprocessing step of several algorithms that rely on identifying characteristic points or interest points so to make correspondences between images, recognize textures, categorize objects or build panoramas. The Harris affine detector can identify similar regions between images that are related through affine transformations and have different illuminations.
Objet (informatique)En informatique, un objet est un conteneur symbolique et autonome qui contient des informations et des mécanismes concernant un sujet, manipulés dans un programme. Le sujet est souvent quelque chose de tangible appartenant au monde réel. C'est le concept central de la programmation orientée objet (POO). En programmation orientée objet, un objet est créé à partir d'un modèle appelé classe ou prototype, dont il hérite les comportements et les caractéristiques.
Rapport signal sur bruitEn électronique, le rapport signal sur bruit (SNR, ) est le rapport des puissances entre la partie du signal qui représente une information et le reste, qui constitue un bruit de fond. Il est un indicateur de la qualité de la transmission d'une information. L'expression d'un rapport signal sur bruit se fonde implicitement sur le principe de superposition, qui pose que le signal total est la somme de ces composantes. Cette condition n'est vraie que si le phénomène concerné est linéaire.
Composition (programmation)En programmation informatique, la composition est une technique qui permet de combiner plusieurs éléments de programmation entre eux pour obtenir un élément ayant une fonctionnalité plus complexe. On distingue la composition de fonctions, la composition d'objets, et la composition dans les modèles. La composition de fonctions consiste à définir une nouvelle fonction en combinant plusieurs fonctions entre elles. Ce procédé s'inspire directement de la composition de fonctions en mathématiques, où le résultat d'une fonction est utilisé comme paramètre d'une autre.
Blob detectionIn computer vision, blob detection methods are aimed at detecting regions in a that differ in properties, such as brightness or color, compared to surrounding regions. Informally, a blob is a region of an image in which some properties are constant or approximately constant; all the points in a blob can be considered in some sense to be similar to each other. The most common method for blob detection is convolution.
Speeded Up Robust FeaturesSpeeded Up Robust Features (SURF), que l'on peut traduire par caractéristiques robustes accélérées, est un algorithme de détection de caractéristique et un descripteur, présenté par des chercheurs de l'ETH Zurich et de la Katholieke Universiteit Leuven pour la première fois en 2006 puis dans une version révisée en 2008. Il est utilisé dans le domaine de vision par ordinateur, pour des tâches de détection d'objet ou de reconstruction 3D.
Détection de visagevignette|Détection de visage par la méthode de Viola et Jones. La détection de visage est un domaine de la vision par ordinateur consistant à détecter un visage humain dans une . C'est un cas spécifique de détection d'objet, où l'on cherche à détecter la présence et la localisation précise d'un ou plusieurs visages dans une image. C'est l'un des domaines de la vision par ordinateur parmi les plus étudiés, avec de très nombreuses publications, brevets, et de conférences spécialisées.