Perception de la paroleLa perception de la parole est le processus par lequel les humains sont capables d'interpréter et de comprendre les sons utilisés dans le langage. L'étude de la perception de la parole est reliée aux champs de la phonétique, de phonologie en linguistique, de psychologie cognitive et de perception en psychologie. Les recherches dans ce domaine essaient de comprendre comment les auditeurs humains reconnaissent les phonèmes (sons de la paroles) ou autres sons tels que la syllabe ou les rimes, et utilisent cette information pour comprendre le langage parlé.
PerceptionLa perception est l'activité par laquelle un sujet fait l'expérience d'objets ou de propriétés présents dans son environnement. Cette activité repose habituellement sur des informations fournies par ses sens. Chez l'espèce humaine, la perception est aussi liée aux mécanismes de cognition. Le mot « perception » désigne : soit le processus de recueil et de traitement de l'information sensorielle ou sensible (en psychologie cognitive par exemple) ; soit la prise de conscience qui en résulte (en philosophie de la perception notamment).
Motor theory of speech perceptionThe motor theory of speech perception is the hypothesis that people perceive spoken words by identifying the vocal tract gestures with which they are pronounced rather than by identifying the sound patterns that speech generates. It originally claimed that speech perception is done through a specialized module that is innate and human-specific. Though the idea of a module has been qualified in more recent versions of the theory, the idea remains that the role of the speech motor system is not only to produce speech articulations but also to detect them.
Conical combinationGiven a finite number of vectors in a real vector space, a conical combination, conical sum, or weighted sum of these vectors is a vector of the form where are non-negative real numbers. The name derives from the fact that a conical sum of vectors defines a cone (possibly in a lower-dimensional subspace). The set of all conical combinations for a given set S is called the conical hull of S and denoted cone(S) or coni(S). That is, By taking k = 0, it follows the zero vector (origin) belongs to all conical hulls (since the summation becomes an empty sum).
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Combinaison linéaireEn mathématiques, une combinaison linéaire est une expression construite à partir d'un ensemble de termes en multipliant chaque terme par une constante et en ajoutant le résultat. Par exemple, une combinaison linéaire de x et y serait une expression de la forme ax + by, où a et b sont des constantes. Le concept de combinaison linéaire est central en algèbre linéaire et dans des domaines connexes des mathématiques. La majeure partie de cet article traite des combinaisons linéaires dans le contexte d'espace vectoriel sur un corps commutatif, et indique quelques généralisations à la fin de l'article.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Speech repetitionSpeech repetition occurs when individuals speak the sounds that they have heard another person pronounce or say. In other words, it is the saying by one individual of the spoken vocalizations made by another individual. Speech repetition requires the person repeating the utterance to have the ability to map the sounds that they hear from the other person's oral pronunciation to similar places and manners of articulation in their own vocal tract.
Combinaison barycentriqueEn géométrie vectorielle, une combinaison barycentrique ou combinaison affine de vecteurs est une combinaison linéaire dont la somme des coefficients est égale à 1. L’expression s’emploie par défaut pour une somme finie, mais parfois aussi pour la limite d’une série sous réserve de convergence. Les combinaisons barycentriques correspondent ainsi aux barycentres des vecteurs vus comme des points de l’espace affine associé, et l’ensemble de ces combinaisons barycentriques constitue le sous-espace affine engendré par ces points.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.