Ratio distributionA ratio distribution (also known as a quotient distribution) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two (usually independent) random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution. An example is the Cauchy distribution (also called the normal ratio distribution), which comes about as the ratio of two normally distributed variables with zero mean.
Loi de FisherEn théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor. La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.
Conversion de typeEn informatique la conversion de type, le transtypage ou la coercition (cast en anglais) est le fait de convertir une valeur d'un type (source) dans un autre (cible). On distingue trois formes de conversion (dont un seul mérite vraiment le nom de conversion) suivant la relation de sous-typage existant entre les types source et cible : la conversion entre types incomparables ; la coercition ascendante (transtypage vers le haut) ; la coercition descendante (transtypage vers le bas). C'est la coercition la plus ancienne historiquement.
Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
Produit matricielLe produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles. En algèbre linéaire, une matrice A de dimensions m lignes et n colonnes (matrice m×n) représente une application linéaire ƒ d'un espace de dimension n vers un espace de dimension m. Une matrice colonne V de n lignes est une matrice n×1, et représente un vecteur v d'un espace vectoriel de dimension n. Le produit A×V représente ƒ(v).
Matrice diagonaleEn algèbre linéaire, une matrice diagonale est une matrice carrée dont les coefficients en dehors de la diagonale principale sont nuls. Les coefficients de la diagonale peuvent être ou ne pas être nuls. Une matrice diagonale est une matrice qui correspond à la représentation d'un endomorphisme diagonalisable dans une base de vecteurs propres. La matrice d'un endomorphisme diagonalisable est semblable à une matrice diagonale. Toute matrice diagonale est symétrique, normale et triangulaire.
Matériau compositevignette|Multicouche, un exemple de matériau composite. Un matériau composite est un assemblage ou un mélange hétérogène d'au moins deux composants, non miscibles mais ayant une forte capacité d'interpénétration et d'adhésion, dont les propriétés mécaniques se complètent. Le nouveau matériau ainsi constitué possède des propriétés avantageuses que les composants seuls ne possèdent pas. Bien que le terme composite soit moderne, de tels matériaux ont été inventés et abondamment utilisés bien avant l'Antiquité, comme les torchis pour la construction de bâtiments.
Inférence de typesL'inférence de types est un mécanisme qui permet à un compilateur ou un interpréteur de rechercher automatiquement les types associés à des expressions, sans qu'ils soient indiqués explicitement dans le code source. Il s'agit pour le compilateur ou l'interpréteur de trouver le type le plus général que puisse prendre l'expression. Les avantages à disposer de ce mécanisme sont multiples : le code source est plus aéré, le développeur n'a pas à se soucier de retenir les noms de types, l'interpréteur fournit un moyen au développeur de vérifier (en partie) le code qu'il a écrit et le programme est peu modifié en cas de changement de structure de données.
Loi du χ²En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.