Generalized chi-squared distributionIn probability theory and statistics, the generalized chi-squared distribution (or generalized chi-square distribution) is the distribution of a quadratic form of a multinormal variable (normal vector), or a linear combination of different normal variables and squares of normal variables. Equivalently, it is also a linear sum of independent noncentral chi-square variables and a normal variable. There are several other such generalizations for which the same term is sometimes used; some of them are special cases of the family discussed here, for example the gamma distribution.
Loi du χ²En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
Loi du χEn théorie des probabilités et en statistique, la loi du (prononcer « khi ») est une loi de probabilité continue. C'est la loi de la moyenne quadratique de k variables aléatoires indépendantes de loi normale centrée réduite, le paramètre k est le nombre de degrés de liberté. L'exemple le plus courant est la loi de Maxwell, pour k=3 degrés de liberté d'une loi du ; elle modélise la vitesse moléculaire (normalisée). Si sont k variables aléatoires indépendantes de loi normale avec pour moyenne et écart-type , alors la variable est de loi du .
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Loi normale multidimensionnelleEn théorie des probabilités, on appelle loi normale multidimensionnelle, ou normale multivariée ou loi multinormale ou loi de Gauss à plusieurs variables, la loi de probabilité qui est la généralisation multidimensionnelle de la loi normale. gauche|vignette|Différentes densités de lois normales en un dimension. gauche|vignette|Densité d'une loi gaussienne en 2D. Une loi normale classique est une loi dite « en cloche » en une dimension.
Loi du χ² non centréeEn théorie des probabilités et en statistique, la loi du χ non centrée est une loi de probabilité qui généralise la loi du χ2. Cette loi apparait lors de tests statistiques, par exemple pour le maximum de vraisemblance. Soit X, k variables aléatoires indépendantes de loi normale de moyennes et variances . Alors la variable aléatoire suit une loi du χ non centrée. Elle dépend de deux paramètres : k qui spécifie le nombre de degrés de liberté (c'est-à-dire le nombre de X), et λ qui est en lien avec la moyenne des variables X par la formule : est parfois appelé le paramètre de décentralisation.
Réseau de capteurs sans filUn réseau de capteurs sans fil est un réseau ad hoc d'un grand nombre de nœuds, qui sont des micro-capteurs capables de recueillir et de transmettre des données d'une manière autonome. La position de ces nœuds n'est pas obligatoirement prédéterminée. Ils peuvent être aléatoirement répartis dans une zone géographique, intitulée « champ de captage » correspondant au terrain concerné pour le phénomène capté. En plus d'applications civiles, il existe des applications militaires aux réseaux de capteurs (détection d'intrusions, localisation de combattants, véhicules, armes, etc.
Ratio distributionA ratio distribution (also known as a quotient distribution) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two (usually independent) random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution. An example is the Cauchy distribution (also called the normal ratio distribution), which comes about as the ratio of two normally distributed variables with zero mean.
Capteurvignette|Le système informatique d'un avion de ligne gère en une fraction de seconde les données issues de nombreux capteurs (vitesse, direction, contrôle des réacteurs). vignette|Capteur infrarouge. Un capteur est un dispositif transformant l'état d'une grandeur physique observée en une grandeur utilisable, telle qu'une tension électrique, une hauteur de mercure, un courant électrique ou la déviation d'une aiguille. Le capteur se distingue de l'instrument de mesure par le fait qu'il ne s'agit que d'une interface entre un processus physique et une information manipulable.
Loi du χ non centréeEn théorie des probabilités et en statistique, la loi du non centrée est une généralisation la loi du χ. Si , sont k variables aléatoires indépendantes de loi normale de moyennes et écart-type respectifs et , alors est une variable aléatoire de loi du non centrée. Cette loi a deux parametres : un entier qui spécifie le nombre de degrés de liberté (c'est-à-dire le nombre de variables ), et un réel relatif à la moyenne des variables par la formule : On dira que X suit une loi du χ non centrée avec k degrés de liberté et de paramètre λ, on notera La densité de probabilité est donnée par : où est la fonction de Bessel modifiée de première espèce.