Table des symbolesUne table de symboles est une centralisation des informations rattachées aux identificateurs d'un programme informatique. C'est une fonction accélératrice de compilation, dont l'efficacité dépend de la conception. Dans une table des symboles, on retrouve des informations comme : le type, l'emplacement mémoire, la portée, la visibilité, etc. Généralement, la table est créée dynamiquement. Une première portion est créée au début de la compilation. Puis, de façon opportuniste, en fonction des besoins, elle est complétée.
Bruit additif blanc gaussienLe bruit additif blanc gaussien est un modèle élémentaire de bruit utilisé en théorie de l'information pour imiter de nombreux processus aléatoires qui se produisent dans la nature. Les adjectifs indiquent qu'il est : additif il s'ajoute au bruit intrinsèque du système d'information ; blanc sa puissance est uniforme sur toute la largeur de bande de fréquences du système, par opposition avec un bruit coloré qui privilégie une bande de fréquences par analogie avec une lumière colorée dans le spectre visible ; gaussien il a une distribution normale dans le domaine temporel avec une moyenne nulle (voir bruit gaussien).
Symbole (informatique)En programmation informatique, un symbole est une étiquette apposée sur certains éléments du code objet, du bytecode ou d'un arbre syntaxique abstrait, permettant de les identifier sous cette forme transformée du code source. Un symbole est très proche d'un identificateur du langage source, mais le concept d'identificateur ne recouvre pas totalement le concept de symbole. Le meilleur exemple en est la décoration de nom effectué par les compilateurs C++ qui consiste à trouver un symbole unique pour un identificateur dont le nom est surchargé.
Bruit gaussienEn traitement du signal, un bruit gaussien est un bruit dont la densité de probabilité est une distribution gaussienne (loi normale). L'adjectif gaussien fait référence au mathématicien, astronome et physicien allemand Carl Friedrich Gauss. La densité de probabilité d'une variable aléatoire gaussienne est la fonction : où représente le niveau de gris, la valeur de gris moyenne et son écart type. Un cas particulier est le bruit blanc gaussien, dans lequel les valeurs à toute paire de temps sont identiquement distribuées et statistiquement indépendantes (et donc ).
Convertisseur numérique-analogiqueUn convertisseur numérique-analogique (CNA, de N/A pour numérique vers analogique ou, en anglais, DAC, de D/A pour Digital to Analog Converter) est un composant électronique dont la fonction est de transformer une valeur numérique (codée sur plusieurs bits) en une valeur analogique proportionnelle à la valeur numérique codée. Généralement la sortie du convertisseur est une tension électrique, mais certains convertisseurs ont une sortie en courant. N/A = Fréquence / Bits Il existe plusieurs solutions pour créer un signal analogique à partir d'un système numérique.
Calculateur analogiquethumb|L'Elwat, un calculateur analogique polonais fabriqué entre 1967 et 1969 ; les éléments visibles sont, de gauche à droite, un voltmètre, un téléscripteur, un oscilloscope et l'ordinateur à proprement parler. Un calculateur analogique est une application particulière des méthodes analogiques consistant à remplacer l'étude d'un système physique donné par celle d'un autre système physique régi par les mêmes équations. Pour que cela présente un intérêt, le système « analogue » doit être facile à construire, les mesures aisées et moins coûteuses que sur le système réel.
Convertisseur analogique-numériquevignette|Symbole normé du convertisseur analogique numérique Un convertisseur analogique-numérique (CAN, parfois convertisseur A/N, ou en anglais ADC pour Analog to Digital Converter ou plus simplement A/D) est un dispositif électronique dont la fonction est de traduire une grandeur analogique en une valeur numérique codée sur plusieurs bits. Le signal converti est généralement une tension électrique. Le résultat de la conversion s'obtient par la formule : où Q est le résultat de Conversion, Ve, la tension à convertir, n le nombre de bits du convertisseur et Vref la tension de référence de la mesure.
Capacité d'un canalLa capacité d'un canal, en génie électrique, en informatique et en théorie de l'information, est la limite supérieure étroite du débit auquel l'information peut être transmise de manière fiable sur un canal de communication. Suivant les termes du théorème de codage du canal bruyant, la capacité d'un canal donné est le débit d'information le plus élevé (en unités d'information par unité de temps) qui peut être atteint avec une probabilité d'erreur arbitrairement faible. La théorie de l'information, développée par Claude E.
Canal de communication (théorie de l'information)vignette En théorie de l'information, un canal de communication ou canal de transmission est un support (physique ou non) permettant la transmission d'une certaine quantité d'information, depuis une source (ou émetteur) vers un destinataire (ou récepteur). Souvent, le canal altère l'information transmise, par exemple en ajoutant un bruit aléatoire. La quantité d'information qu'un canal de communication peut transporter est limitée : on parle de capacité du canal.
Théorème du codage de canalEn théorie de l'information, le théorème du codage de canal aussi appelé deuxième théorème de Shannon montre qu'il est possible de transmettre des données numériques sur un canal bruité avec un taux d'erreur arbitrairement faible si le débit est inférieur à une certaine limite propre au canal. Ce résultat publié par Claude Shannon en 1948 est fondé sur des travaux antérieurs de Harry Nyquist et Ralph Hartley. La première preuve rigoureuse fut établie par Amiel Feinstein en 1954.