Axiome du choix dénombrablevignette|Chaque ensemble dans la suite dénombrable d'ensembles (Si) = S1, S2, S3, ... contient un élément différent de zéro, et éventuellement une infinité (ou même une infinité indénombrable) d'éléments. L'axiome du choix dénombrable nous permet de sélectionner arbitrairement un seul élément de chaque ensemble, formant une suite correspondante d'éléments (xi) = x1, x2, x3, ...
Probabilité conditionnellevignette|Illustration des probabilités conditionnelles avec un diagramme d'Euler. On a la probabilité a priori et les probabilités conditionnelles , et .|320x320px En théorie des probabilités, une probabilité conditionnelle est la probabilité d'un événement sachant qu'un autre événement a eu lieu. Par exemple, si une carte d'un jeu est tirée au hasard, on estime qu'il y a une chance sur quatre d'obtenir un cœur ; mais si on aperçoit un reflet rouge sur la table, il y a maintenant une chance sur deux d'obtenir un cœur.
Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
ChoixUn choix résulte de la décision d'un individu ou d'un groupe confronté à une situation ou à un système offrant une ou plusieurs options. Le terme « choix » pouvant désigner le processus par lequel cette opération est menée à bien et/ou le résultat de ladite opération : en philosophie, la question de savoir si un individu effectue des choix librement ou est déterminé renvoie au problème de l'existence ou non du libre arbitre. De plus, l’expression « être un Renaud » prend de l’ampleur dans le langage utilisé par les 18-25ans.
NeuroéconomieLa neuroéconomie est une branche de recherche au croisement de l'économie et des neurosciences cognitives qui étudie l'influence des facteurs cognitifs et émotionnels dans les prises de décisions, qu'il s'agisse d'investissement, d'achat, de prise de risque ou de consommation. Elle couvre, entre autres, sous l'appellation neurofinance, la prise de décision en matière de placements et d'emprunts et aussi le neuromarketing qui utilise également des outils de pour les études de marché et le comportement des consommateurs.
Modèle (économie)Un modèle est, en économie, une représentation simplifiée de la réalité économique ou d'une partie de celle-ci. Un modèle économique se base sur des hypothèses économiques et a recours au langage mathématique. L'économie se fonde sur les modèles pour estimer l'évolution d'un système économique, comme la croissance, le commerce international, etc. La science économique vise à expliquer les mécanismes à l’œuvre dans un système économique, ou dans une partie de ce système.
Loi bêtaDans la théorie des probabilités et en statistiques, la loi bêta est une famille de lois de probabilités continues, définies sur , paramétrée par deux paramètres de forme, typiquement notés (alpha) et (bêta). C'est un cas spécial de la loi de Dirichlet, avec seulement deux paramètres. Admettant une grande variété de formes, elle permet de modéliser de nombreuses distributions à support fini. Elle est par exemple utilisée dans la méthode PERT. Fixons les deux paramètres de forme α, β > 0.
Indicative conditionalIn natural languages, an indicative conditional is a conditional sentence such as "If Leona is at home, she isn't in Paris", whose grammatical form restricts it to discussing what could be true. Indicatives are typically defined in opposition to counterfactual conditionals, which have extra grammatical marking which allows them to discuss eventualities which are no longer possible. Indicatives are a major topic of research in philosophy of language, philosophical logic, and linguistics.
Implication (logique)En logique mathématique, l'implication est l'un des connecteurs binaires du langage du calcul des propositions, généralement représenté par le symbole « ⇒ » et se lisant « ... implique ... », « ... seulement si ... » ou, de façon équivalente, « si ..., alors ... » comme dans la phrase « s'il pleut, alors il y a des nuages ». L'implication admet des interprétations différentes selon les différents systèmes logiques (logique classique, modale, intuitionniste, etc.).
Espérance conditionnelleEn théorie des probabilités, l'espérance conditionnelle d'une variable aléatoire réelle donne la valeur moyenne de cette variable quand un certain événement est réalisé. Selon les cas, c'est un nombre ou alors une nouvelle variable aléatoire. On parle alors d'espérance d'une variable aléatoire conditionnée par un événement B est, intuitivement, la moyenne que l'on obtient si on renouvelle un grand nombre de fois l'expérience liée à la variable aléatoire et que l'on ne retient que les cas où l'événement B est réalisé.