Scaling dimensionIn theoretical physics, the scaling dimension, or simply dimension, of a local operator in a quantum field theory characterizes the rescaling properties of the operator under spacetime dilations . If the quantum field theory is scale invariant, scaling dimensions of operators are fixed numbers, otherwise they are functions of the distance scale. In a scale invariant quantum field theory, by definition each operator O acquires under a dilation a factor , where is a number called the scaling dimension of O.
Espace de TeichmüllerEn mathématiques, l'espace de Teichmüller d'une surface (réelle) topologique (ou différentielle) , est un espace qui paramétrise des structures complexes sur à l'action des homéomorphismes isotopes à l'identité près. Les espaces Teichmüller portent le nom d'Oswald Teichmüller. Chaque point d'un espace de Teichmüller peut être considérée comme une classe d'isomorphismes de surfaces de Riemann "marquées", où un "marquage" est une classe d'isotopie d'homéomorphismes de sur lui-même.
MultiversEn sciences, le multivers est l'ensemble des univers présents concurremment, dans le cadre d'une théorie cosmologique donnée. L'idée d'univers multiples se rencontre pour la première fois chez le philosophe grec Anaximandre (). Nicolas de Cues (Docte Ignorance, 1440) ainsi que Giordano Bruno (L'Infini, l'univers et les mondes, 1584) Toutefois, Bruno ne concevait pas l'existence d'une multitude d'univers, mais soutenait plutôt que l'univers était infini et dépourvu de centre, incluant une multitude de mondes centrés sur leur étoile.
OctonionEn mathématiques, les octonions ou octaves sont une extension non associative des quaternions. Ils forment une algèbre à huit dimensions sur le corps R des nombres réels. L’algèbre des octonions est généralement notée O. En perdant l’importante propriété d’associativité, les octonions ont reçu moins d’attention que les quaternions. Malgré cela, ils gardent leur importance en algèbre et en géométrie, notamment parmi les groupes de Lie. Les octonions ont été découverts en 1843 par , un ami de William Hamilton, qui les appela octaves.
Beta function (physics)In theoretical physics, specifically quantum field theory, a beta function, β(g), encodes the dependence of a coupling parameter, g, on the energy scale, μ, of a given physical process described by quantum field theory. It is defined as and, because of the underlying renormalization group, it has no explicit dependence on μ, so it only depends on μ implicitly through g. This dependence on the energy scale thus specified is known as the running of the coupling parameter, a fundamental feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques.
InstantonEn mécanique quantique et en théorie quantique des champs, un instanton est une solution classique des équations du mouvement c'est-à-dire correspondant à un extremum local de l'action qui définit la théorie, mais pas à un minimum global. Puisque la théorie perturbative considère la plupart du temps un développement en puissance de la constante de couplage de la théorie au voisinage du minimum global de l'action, appelé l'état fondamental, les instantons sont inaccessibles à ce développement et constituent de ce point de vue des phénomènes non-perturbatifs.
Défaut topologiqueEn cosmologie, un défaut topologique est une configuration souvent stable de matière que certaines théories prédisent avoir été formée lors des transitions de phase de l'univers primitif. Selon la nature des brisures de symétrie, on suppose la formation de nombreux solitons au travers du mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble. Les défauts topologiques les plus courants sont les monopôles magnétiques, les cordes cosmiques, les murs de domaine, les skyrmions et les textures.
SupersymétrieLa supersymétrie (abrégée en SuSy) est une symétrie supposée de la physique des particules qui postule une relation profonde entre les particules de spin demi-entier (les fermions) qui constituent la matière et les particules de spin entier (les bosons) véhiculant les interactions. Dans le cadre de la SuSy, chaque fermion est associé à un « superpartenaire » de spin entier, alors que chaque boson est associé à un « superpartenaire » de spin demi-entier.
Liouville's theorem (conformal mappings)In mathematics, Liouville's theorem, proved by Joseph Liouville in 1850, is a rigidity theorem about conformal mappings in Euclidean space. It states that any smooth conformal mapping on a domain of Rn, where n > 2, can be expressed as a composition of translations, similarities, orthogonal transformations and inversions: they are Möbius transformations (in n dimensions). This theorem severely limits the variety of possible conformal mappings in R3 and higher-dimensional spaces.