Théorie des cordesEn physique fondamentale, la théorie des cordes est un cadre théorique dans lequel les particules ponctuelles de la physique des particules sont représentées par des objets unidimensionnels appelés cordes. La théorie décrit comment ces cordes se propagent dans l'espace et interagissent les unes avec les autres. Sur des échelles de distance supérieures à l'échelle de la corde, cette dernière ressemble à une particule ordinaire, avec ses propriétés de masse, de charge et autres, déterminées par l'état vibratoire de la corde.
Théorème de l'indice d'Atiyah-SingerEn mathématiques, et plus précisément en géométrie différentielle, le théorème de l'indice d'Atiyah-Singer, démontré par Michael Atiyah et Isadore Singer en 1963, affirme que pour un opérateur différentiel elliptique sur une variété différentielle compacte, l’indice analytique (lié à la dimension de l'espace des solutions) est égal à l’indice topologique (défini à partir d'invariants topologiques). De nombreux autres théorèmes, comme le théorème de Riemann-Roch, en sont des cas particuliers, et il a des applications en physique théorique.
Théorie du toutLa théorie du tout est une théorie physique susceptible de décrire de manière cohérente et unifiée l'ensemble des interactions fondamentales. Une telle théorie n'a pas été découverte à l'heure actuelle, principalement en raison de l'impossibilité de trouver une description de la gravitation qui soit compatible avec le modèle standard de la physique des particules, qui est le cadre théorique utilisé pour la description des trois autres interactions connues (électromagnétisme, interaction faible et interaction forte).
Théorie MLa théorie M est une théorie physique devant unifier les différentes versions de la théorie des supercordes. L'existence de cette théorie fut conjecturée par Edward Witten en 1995, lors d'un colloque sur la théorie des cordes à l'Université de Californie du Sud. Cette annonce engendra un tourbillon de nouvelles recherches, qu'on a appelé la . Selon Witten le M de théorie M peut signifier magie, mystère ou membrane au choix, et le véritable sens ne s'imposera que quand la théorie sera formulée définitivement.
Elliptic complexIn mathematics, in particular in partial differential equations and differential geometry, an elliptic complex generalizes the notion of an elliptic operator to sequences. Elliptic complexes isolate those features common to the de Rham complex and the Dolbeault complex which are essential for performing Hodge theory. They also arise in connection with the Atiyah-Singer index theorem and Atiyah-Bott fixed point theorem. If E0, E1, ...
Dualité TEn théorie des cordes et des supercordes la dualité T désigne une dualité particulière sous laquelle un (ou plusieurs) rayon de compactification est inversé. Considérons dans un premier temps le cas le plus simple de dualité T. Si on compactifie la théorie bosonique sur un cercle de rayon alors les états de vide de la théorie sont doublement quantifiés de la façon suivante: le nombre quantique indique que la corde associée (ou plus précisément son centre de masse) possède un moment dans la direction de compactification.
Tenseur de Riemannvignette|Motivation de la courbure de Riemann pour les variétés sphériques. En géométrie riemannienne, le tenseur de courbure de Riemann-Christoffel est la façon la plus courante d'exprimer la courbure des variétés riemanniennes, ou plus généralement d'une variété disposant d'une connexion affine, avec ou sans torsion. Soit deux géodésiques d'un espace courbe, parallèles au voisinage d'un point P. Le parallélisme ne sera pas nécessairement conservé en d'autres points de l'espace.
Tenseur de WeylEn géométrie riemannienne, le tenseur de Weyl, nommé en l'honneur d'Hermann Weyl, représente la partie du tenseur de Riemann ne possédant pas de trace. En notant respectivement R_abcd, R_ab, R et g_ab le tenseur de Riemann, le tenseur de Ricci, la courbure scalaire et le tenseur métrique, le tenseur de Weyl C_abcd s'écrit où n est la dimension de l'espace considéré. En particulier, en relativité générale, où l'on considère presque exclusivement des espaces-temps de dimension 4, on a En relativité générale, le tenseur de Ricci est lié à la présence de matière ; en l'absence de matière, le tenseur de Ricci est nul.
Nome (mathematics)In mathematics, specifically the theory of elliptic functions, the nome is a special function that belongs to the non-elementary functions. This function is of great importance in the description of the elliptic functions, especially in the description of the modular identity of the Jacobi theta function, the Hermite elliptic transcendents and the Weber modular functions, that are used for solving equations of higher degrees. The nome function is given by where and are the quarter periods, and and are the fundamental pair of periods, and is the half-period ratio.
Théorie de champs de cordesString field theory (SFT) is a formalism in string theory in which the dynamics of relativistic strings is reformulated in the language of quantum field theory. This is accomplished at the level of perturbation theory by finding a collection of vertices for joining and splitting strings, as well as string propagators, that give a Feynman diagram-like expansion for string scattering amplitudes. In most string field theories, this expansion is encoded by a classical action found by second-quantizing the free string and adding interaction terms.